Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Recent Mathematical Tables


Journal: Math. Comp. 2 (1946), 159-178
DOI: https://doi.org/10.1090/S0025-5718-46-99609-3
Corrigendum: Math. Comp. 2 (1947), 228.
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] F. J. Duarte, (a) Nouvelles Tables de Log nl à 33 décimales depuis $ n = 1$ jusqu'd $ n = 3000$, Paris, 1927, p. III; (b) Nouvelles Tables Logarithmiques à 36 Décimales, Paris, 1933, p. xxii.
  • [2] P. Gray, Tables for the Formation of Logarithms & Antilogarithms, London, 1865, p. 39.
  • [3] C. Gudermann, J. f. d. reine u. angew. Math., v. 9, 1832, p. 362.
  • [4] J. P. Kulik, Astron. Nach., v. 3, 1825, cols. 191-192.
  • [5] A. Steinhauser, Hilfstafeln zur präcisen Berechnung zwanzigstelliger Logarithmen ..., Vienna, 1880, p. 1.
  • [6] A. F. D. Wackerbarth, R.A.S., Mo. No., v. 27, 1867, p. 254.
  • [7] R. C. A., Scripta Math., v. 4, 1936, p. 99, 293. See also MTAC, v. 1, p. 57.
  • [8] C. F. Gauss, ``Einige Bemerkungen zu Vega's Thesaurus Logarithmorum,'' Astron. Nachr., v. 32, 1851, cols. 181-187; also in his Werke, v. 3, 1866 and 1876, p. 257-264.
  • [9] J. W. L. Glaisher, ``On logarithmic tables,'' R.A.S., Mo. No., v. 33, 1873, p. 440-451; see also an appended letter of J. N. Lewis. See also v. 32, 1872, p. 288-290, and v. 34, 1874, p. 471-475.
  • [10] J. F. W. Gronau, ``Tafeln für die hyperbolischen Sectoren und für die Logarithmen ihrer Sinus und Cosinus,'' Natur. Ges., Danzig, Neueste Schriften, v. 6, no. 4, 1862, p. vi. Lists 99 errors in T. II.
  • [11] M. von Leber, Tabularum ad Faciliorem et Breviorem, in Georgii Vegae ``Thesauri Logarithmorum'' magnis Canonibus, Interpolationis Computationem utilium, Trias, Vienna, 1897. He lists 272 errors in the tenth place of T. I, of which all but five are unit errors; the three serious ones had been corrected by Vega himself. Peters showed that 8 other entries by Leber as errors in Vega, were in fact correct. Also 2148 errors in T. II.
  • [12] J. P. Hobert & L. Ideler, Neue Trigonometrische Tafeln für die Decimaleintheilung des Quadranten, Berlin, 1799, p. 350-351. There are here 168 corrections of T. II, 157 finalunit errors, 10 2-unit errors, 1 3-unit error.
  • [13] J. W. L. Glaisher, B.A.A.S., Report, 1873, p. 138.
  • [14] Other lists are as follows: K. Knorre, Astr. Nach., v. 7, 1829, col. 62. Error in T. I. R. Luther, Astr. Nach., v. 44, 1856, cols. 239-240. Error in T. II. E. Sang, R. So. Edinburgh, Proc., v. 8, 1875, p. 376. 40 unit errors, and one error listed by Vega, in T. I, $ N = 20071 - 29703$. D. J. M. M'Kenzie, Bull. Sci. Math., s. 2, v. 4, 1880, p. 31f. Error in T. III. A. Westphal, Astr. Nach., v. 114, 1886, cols. 333-334. Error in T. II. J. Frischauf, Astr. Nach., v. 174, 1907, col. 173. 2 errors in T. I. G. Witt, Astr. Nach., v. 178, 1908, cols. 263-266. 23 errors in T. II. P. Adrian, Astr. Nach., v. 198, 1914, cols. 167f, 327f. Errors in T. I.
  • [15] F. Lefort, Paris, Observatoire, Annales, Mémoires, v. 4, 1858, p. [148]-[150]. 300 errors listed in T. I. Peters' table does not adopt 7 of the final-digit unit changes demanded by Lefort for 26188, 29163, 30499, 31735, 34162, 34358, 60096. There are 25 very serious errors in T. I of 1, listed by Lefort, but all of these are in Vega's Errata list. F. Lefort, R. So. Edinburgh, Proc., v. 8, 1875, p. 571-574, 587; also by E. Sang, p. 586-587. Lefort lists 287 last-figure errors (all except 5, one unit in the tenth decimal place) in T. I, 2 in Table II, and 2 in T. III (1099, 7853). There is a duplication of statement of 7 correct logarithms as erroneous. But furthermore, Lefort notes 6 errors, all in Vega's list of Errata, which implies inclusion of 100330 since the unit error for 10033 is listed, but it is not actually stated, as in Lefort.
  • [1] G. N. Watson, ``Two tables of partitions,'' London Math. So., Proc. s. 2, v. 42, 1937, p. 550-556.
  • [2] P. A. MacMahon, ``The parity of $ p(n)$, the number of partitions of $ n$, when $ n \leq 1000$,'' London Math. So., J., v. 1, 1926, p. 226.
  • [3] J. Sylvester, ``On a new theorem in partitions'' and ``Note on the graphical method in partitions,'' Johns Hopkins Univ., Circulars, v. 2, 1883, p. 70-71; Collected Math. Papers, v. 3, 1909, p. 680-684.
  • [1] D. Jackson, The Method of Numerical Integration in Exterior Ballistics, Washington, 1921, p. 24; this was a text-book prepared in the office of the Chief of Ordnance, 1919.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-46-99609-3
Article copyright: © Copyright 1946 American Mathematical Society