angles being given in degrees and minutes. This same table was given much earlier by Al-Khowârizmî (fl. about 825); see H. Suter, Die astronomischen Tafeln des Muhammed Ibn Müsä Al-Khowârizmî, Copenhagen, 1914, Table 60, p. 174 (Danske Vidensk. Selsk., Skrifter, 7s., Hist. og Filos., v. 3, no. 1). R. C. A.

QUERIES—REPLIES

35. Tables of \(\tan^{-1} \left(\frac{m}{n} \right) \) (Q 14, v. 1, p. 431; QR 18, v. 1, p. 460; 20, v. 2, p. 62; 24, v. 2, p. 147; 28, v. 2, p. 287).—A table has been prepared which expresses \(\tan^{-1} \left(\frac{m}{n} \right) \), for \(0 < m < n \leq 50, 0 < m < n = 100 \), as a sum of multiples of \(\tan^{-1} n \), where the \(n_i \) are fundamental in the sense of QR28. From this table a table of \(\tan^{-1} \left(\frac{m}{n} \right) \) can be obtained by addition of values from such tables as that of the NBSCL. The manuscript is in the possession of the National Bureau of Standards.

John Todd

CORRIGENDA

V. 1, p. 59, l. -21, delete correct.

V. 2, p. 137, \(F(\theta, \phi) \), at \(\theta = \phi = 86^\circ \), substitute: for 3.17204 1744, read 3.17030 9981.

V. 3, p. 84, l. -6, -5, for 1 It may be the first six-place table of the kind, but as long ago, read As long ago; p. 106, l. 19-20, for \(-49 \), read \(-49 \); p. 129, l. 23, for A. H. Burks, read A. W. Burks. These errors in v. 3 were due to errata in the texts which were being reviewed.

Messrs. B. L. Coleman & Sidney Michelson of The British Electrical and Allied Industries Research Association, 5 Wadsworth Road, Greenford, Middx., England, reported the following, which Professor Lehmer accepts: v. 1, p. 379, l. 20-21, for \(B^m_k = \alpha^2 \alpha^2 \alpha^2 \) read \(B^m_k = \alpha^2 \alpha^2 \alpha^2 + \alpha^{-1} \alpha^2 \); for \(B^m_k = - \alpha^2 \alpha^2 \alpha^2 \), read \(B^m_k = - (\alpha^2 \alpha^2 \alpha^2 + \alpha^{-1} \alpha^2 \alpha^2 + \alpha^{-1} \alpha^2 \alpha^2) \). Equation (11) should then be

\[
\frac{1}{\alpha_1} = \frac{B^m_1}{A^m_1}, \\
\frac{1}{\alpha_2} = \frac{B^m_2}{A^m_2} - \frac{B^m_1}{A^m_1}, \\
\frac{1}{\alpha_3} = \frac{B^m_3}{A^m_3} - \frac{B^m_2}{A^m_2}.
\]

In general, if the equation has real and complex roots, and \(\alpha_k \) is simple, it is given by

\[
\frac{1}{\alpha_k} = \frac{B^m_k}{A^m_k} - \frac{B^m_{k-1}}{A^m_{k-1}},
\]

whilst complex \(\alpha \)'s are given by the expression (13) on page 380.