Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Step-by-step integration of $ \ddot x=f(x,y,z,t)$ without a ``corrector.''


Author: Samuel Herrick
Journal: Math. Comp. 5 (1951), 61-67
MSC: Primary 65.0X
DOI: https://doi.org/10.1090/S0025-5718-1951-0042795-2
MathSciNet review: 0042795
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] T. R. von Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, v. 2, Leipzig, 1880.
  • [2] J. C. Watson, Theoretical Astronomy. Philadelphia, 1892.
  • [3] P. H. Cowell, & A. C. D. Crommelin, Investigation of the Motion of Halley's Comet from 1759 to 1910. Appendix to Greenwich Observations for 1909. Edinburgh, 1910. p. 84.
  • [4] B. V. Numerov, Méthode nouvelle de la détermination des orbites et le calcul des éphémérides en tenant compte des perturbations. Observatoire Astrophysique Central de Russie, Publications, v. 2, Moscow, 1923. ``A method of extrapolation of perturbations,'' Roy. Astr. Soc., Monthly Notices, v. 84, 1924, p. 592-601.
  • [5] J. Jackson, Note on the numerical integration of $ \frac{{{d^2}x}}{{d{t^2}}} = f(x,t)$. Roy. Astr. Soc., Monthly Notices, v. 84, 1924, p. 602-606.
  • [6] E. C. Bower, ``Coefficients for interpolating a function directly from a table of double integration.'' Lick Observatory, Bull., no. 445, v. 16, 1932, p. 42.
  • [7] Interpolation and Allied Tables, reprinted from the British Nautical Almanac for 1937, 4th edition with additions. (London, H. M. Stationery Office, 1946.)
  • [8] W. E. Milne, Numerical Calculus. Princeton, 1949.
  • [9] L. Fox & E. T. Goodwin, ``Some new methods for the numerical integration of ordinary differential equations,'' MS. awaiting publication.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.0X

Retrieve articles in all journals with MSC: 65.0X


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1951-0042795-2
Article copyright: © Copyright 1951 American Mathematical Society