Formulas for calculating the error function of a complex variable
Author:
H. E. Salzer
Journal:
Math. Comp. 5 (1951), 67-70
MSC:
Primary 65.0X
DOI:
https://doi.org/10.1090/S0025-5718-1951-0048150-3
Corrigendum:
Math. Comp. 6 (1952), 61.
MathSciNet review:
0048150
Full-text PDF
References | Similar Articles | Additional Information
- [1]
J. Burgess, ``On the definite integral
with extended tables of values,'' R. Soc. Edinburgh, Trans., v. 39, part II, 1898, p. 257-321.
- [2] J. R. Airey, ``The 'converging factor' in asymptotic series and the calculation of Bessel, Laguerre and other functions,'' Phil. Mag., s. 7, v. 24, 1937, p. 521-552.
- [3] W. L. Miller & A. R. Gordon, ``Numerical evaluation of infinite series,'' Jn. Phys. Chem., v. 35, 1931, especially part V, p. 2856-2857, 2860-2865.
- [4]
J. B. Rosser, Theory and Application of
and
. Part I. Methods of Computation, New York, 1948.
- [5] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Oxford, 1937, p. 60-64.
- [6] E. T. Whittaker & G. N. Watson, A Course of Modern Analysis. Fourth ed., Cambridge, 1940, p. 124, 474-476.
- [7]
E. T. Goodwin, ``The evaluation of integrals of the form
Cambridge Phil. Soc., Proc., v. 45, 1949, p. 241-245. MR 0029281 (10:575f)
- [8] A. M. Turing, ``A method for the calculation of the Zeta-function,'' London Math. Soc, Proc., s. 2, v. 48, 1943, p. 180-197. MR 0009612 (5:173a)
- [9]
H. G. Dawson, ``On the numerical value of
,'' London Math. Soc., Proc., s. 1, v. 29, 1898, p. 519-522.
- [10] NBS, Tables of Probability Functions. V. 1, New York, 1941.
Retrieve articles in Mathematics of Computation with MSC: 65.0X
Retrieve articles in all journals with MSC: 65.0X
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1951-0048150-3
Article copyright:
© Copyright 1951
American Mathematical Society