Use of continued fractions in high speed computing

Author:
D. Teichroew

Journal:
Math. Comp. **6** (1952), 127-133

MSC:
Primary 65.0X

DOI:
https://doi.org/10.1090/S0025-5718-1952-0049650-3

Corrigendum:
Math. Comp. **19** (1965), 706.

Corrigendum:
Math. Comp. **7** (1953), 72.

MathSciNet review:
0049650

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Oskar Perron,*Die Lehre von den Kettenbrüchen*, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR**0037384****[2]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596****[3]**L. M. Milne-Thomson,*The Calculus of Finite Differences*. London, 1933.**[4]**N. E. Nörlund,*Vorlesungen über Differenzenrechung*. Berlin, 1924, p. 438-55.**[5]**R. E. Lane, ``Interpolation by means of continued fractions,'' Fraternal Actuarial Assoc.,*Proc.*, no. 19, 1944-46.**[6]**T. Muir, ``New general formulae for the transformation of infinite series into continued fractions,'' Roy. Soc. Edin.,*Trans.*, v. 27, 1872-76, p. 467.**[7]**J. H. Müller, ``On the application of continued fractions to the evaluation of certain integrals, with special reference to the incomplete Beta function,''*Biometrika*, v. 22, 1920-1, p. 284-297.**[8]**Leo A. Aroian,*Continued fractions for the incomplete Beta function*, Ann. Math. Statistics**12**(1941), 218–223. MR**0005193****[9]**J. Burgess, ``On the definite integral with extended tables of values,'' Roy. Soc. of Edin.,*Trans.*, v. 39, part II, 1898, p. 257-321.**[10]**W. P. Heising, ``An eight-digit general purpose control panel,'' IBM*Technical Newsletter*, no. 3, 1951.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.0X

Retrieve articles in all journals with MSC: 65.0X

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1952-0049650-3

Article copyright:
© Copyright 1952
American Mathematical Society