On the estimation of quadrature errors for analytic functions

Authors:
P. Davis and P. Rabinowitz

Journal:
Math. Comp. **8** (1954), 193-203

MSC:
Primary 65.0X

DOI:
https://doi.org/10.1090/S0025-5718-1954-0065256-6

MathSciNet review:
0065256

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Stefan Bergman,*The Kernel Function and Conformal Mapping*, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR**0038439****[2]**Philip Davis,*Errors of numerical approximation for analytic functions*, J. Rational Mech. Anal.**2**(1953), 303–313. MR**0054348****[3]**C. Lanczos, Introduction,*Tables of Chebyshev Polynomials*. NBS Applied Math., Ser. 9, Washington, D. C., 1952.**[4]**Arnold N. Lowan, Norman Davids, and Arthur Levenson,*Table of the zeros of the Legendre polynomials of order 1–16 and the weight coefficients for Gauss’ mechanical quadrature formula*, Bull. Amer. Math. Soc.**48**(1942), 739–743. MR**0007115**, https://doi.org/10.1090/S0002-9904-1942-07771-8**[5]**See, e.g., W. Magnus & F. Oberhettinger,*Formeln und Sätze*, 2nd ed., p. 3, 1st formula.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.0X

Retrieve articles in all journals with MSC: 65.0X

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1954-0065256-6

Article copyright:
© Copyright 1954
American Mathematical Society