Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **9** (1955), 26-41

DOI:
https://doi.org/10.1090/S0025-5718-55-99116-X

Full-text PDF Free Access

References | Additional Information

**[1]**R. A. Fisher & Frank Yates,*Statistical Tables for Biological, Agricultural, and Medical Research*. London & Edinburgh, 4th ed., 1953.**[1]**NBSCL,*Tables of the Binomial Probability Distribution*. AMS no. 6, Washington, 1950. [*MTAC*, v. 4, p. 208-209.]**[1]**R. A. Fisher & F. Yates,*Statistical Tables for Biological, Agricultural and Medical Research*. London & Edinburgh, 1938.**[1]**Karl Pearson and Alice Lee, ``On the generalized probable error in multiple normal correlation,''*Biometrika*, v. 6, 1908, p. 59-68.**[2]**R. A. Fisher in*BAAS Math. Tables*, v. I, London, 1931, p. xxvi-xxxv.**[1]**John W. Tukey,*Some sampling simplified*, J. Amer. Statist. Assoc.**45**(1950), 501–519. MR**0040624****[2]**F. N. David and M. G. Kendall,*Tables of symmetric functions. I*, Biometrika**36**(1949), 431–449. MR**0033788****[3]**John Wishart,*Moment coefficients of the 𝑘-statistics in samples from a finite population*, Biometrika**39**(1952), 1–13. MR**0050223**, https://doi.org/10.1093/biomet/39.1-2.1**[1]**H. Weiler, ``On the most economical sample size for controlling the mean of a population,''*Ann. Math. Stat.*, v. 23, 1953, p. 247-254.**[2]**H. Weiler, ``The use of runs to control the mean in quality control,'' Amer. Stat. Assn.,*Jn.*, v. 48, 1953, p. 816-825.**[1]**F. Wilcoxon, ``Individual comparisons by ranking methods,''*Biometrics Bull.*, v. 1, 1945, p. 80-83.**[2]**H. B. Mann and D. R. Whitney,*On a test of whether one of two random variables is stochastically larger than the other*, Ann. Math. Statistics**18**(1947), 50–60. MR**0022058****[3]**T. J. Terpstra,*The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking*, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math.**14**(1952), 327–333. MR**0048751****[1]**L. R. Salvosa, ``Tables of Pearson's type III function,''*Ann. Math. Stat.*, v. 1, 1930, following p. 198.**[1]**NYMTP, ``Table of sine and cosine integrals for arguments from 10 to 100.'' New York, 1942.**[1]**Pran Nath,*Confluent hypergeometric function*, Sankhyā**11**(1951), 153–166. MR**0044892****[1]**Milton Abramowitz and H. A. Antosiewicz,*Coulomb wave functions in the transition region*, Physcial Rev. (2)**96**(1954), 75–77. MR**0063494****[1]**J. McDougall & E. C. Stoner, Roy. Soc.*Phil. Trans.*, v. 237A, 1938, p. 67-104. 2 J. E. Robinson,*Phys. Rev.*, s. 2, v. 83, 1951, p. 678-679.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-55-99116-X

Article copyright:
© Copyright 1955
American Mathematical Society