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Then application of the recurrence relation (6) shows that

f(x) = bopoix) + btlpiix) + a0po(x)}.
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Conjectures Concerning the Mersenne Numbers

Conjectures concerning the Mersenne numbers are appropriate since they

were inaugurated with one. A conjecture [1] that seems likely to be false, but

unlikely to be proved false, is that all numbers pn are prime (» = 1,2,3, • • •),

where, for example, pi is
2

2 -1
2 -1

2 -1
2 -1

Recursively, pi = 3, pn+i = 2"» - 1. The first four are 3, 7, 127 and 2127 - 1,

all known to be prime. Any factor of p$ is congruent to 1 modulo pi, so pf, cer-

tainly has no factor less than 2127. Similarly

is not divisible by any known prime, if 22281 — 1 is still the largest known prime

[2]. One can try to argue about the probability that a number of the form

2P — 1 is prime, when p is known to be prime. The probability that a whole

number x is prime is about 1/log x, and is close to

(1) |e>(l - |)(1 - J)(l - i) ••• (l -i)

where q == Vx, so the factors (1 — \), (1 — §), etc., can be regarded as prob-

abilities that are not far from independent. But if x = 2p — 1, only every pth

factor of (1) should be taken, and the probability apparently ought to be about

the pth root of l/£-Iog2, which is approximately 1 when p is large. But this

argument is also invalid, as we may see from the statistics of Mersenne primes

[2]. We may see from these statistics (assuming them to contain no gaps), that,

if mn denotes the wth Mersenne prime (mi = 3), then

2.18 log log mn < n < 2.72 log log mn   (3 ^ n ^ 17)

while

2.31 log log nin = 17.
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It is reasonable to suppose that the number of Mersenne primes less than x,

when x is large, is about 2.3 log log x. This conjecture may be shown to be equiva-

lent to the assertion that the probability of 2P — 1 being prime, when p is known

to be prime and is large, is about 1.6(log p)/p, and is perhaps asymptotically

(log2 p)/p- If so, the probability that pi is prime is negligible, and we should be

able to say with confidence that our original conjecture was the exact opposite

of the truth.
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REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

55[A, F].—Horace S. Uhler, "Hamartiexeresis as applied to tables involving

logarithms," Nat. Acad. Sei., Proc, v. 40, 1954, p. 728-731 [1].

Hamartiexeresis appears to be a technical term in theology, meaning the

absolute removal of sin.

This paper contains in tabular form, the exponents of the prime factors

(2,3, •••,997) in the product (1!)(2!) • • • (1000!).
This table was used to check the first thousand entries in the table of F. J.

Duarte [2]. Two errors were found :

log 99!:  the seventh quartet should read 8029 instead of 8929.

log 266!: the eighth quartet should read 1897 instead of 1987.

Later calculations indicate no (non-cancelling) errors in the range from

n = 1001 to n = 1200.

J-T.
1 See also Nat. Acad. Sei., Proc, v. 41, 1955, p. 183, for errata.
2 F. J. Duarte, Nouvelles tables de logn! a 33 decimales, depuis n = 1 jusqu'ä n = 3000.

Geneva and Paris, 1927.

56[C, D, E, K, L, S].—Cecil Hastings, Jr., Jeanne T. Hayward, & James P.

Wong, Jr. Approximations for Digital Computers. Princeton University Press,

Princeton, N. J., 1955, viii + 201 p., 25 cm. Price $4.00.

This book contains rational approximations of the following functions with

approximate precision as indicated (there are several approximations to each

function and the approximate precision of each is shown):

logic x, 10"* < x < 10*, 3D, 5D, 6D, 7D; <p(x) = (1 - e~*)/x, 0 < x < °o •
3D, 4D, 5D; arctan x, - 1 < x < 1, 3D, 4D, 5D, 6D, 7D, 8D; sin %irx>
- 1 <x< 1,4S,6S,8S;10*,0 < x < 1,4S, 6S, 7S, 9S; W(x) = «T»/(1 + e"*)2-
- oo <x < oo, 3D, 4D,5D ;El{x) = e~x*12/^, - °o <x < °°,3D, 3D,4D;

K(n) = (n - 2«2 - 2ns) In (1 + 2/n) + (2w + 18w2 + 16w3 + 4«4) (2 + m)~2,

0 < n < oo, 3D; T(l + x), 0 < x < 1, 5D, 5D, 6D, 7D; *(x) = (x/2
- arcsin x) (1 - *)-*, 0 < x < 1, 4D, 5D, 6D, 7D, 8D; log2 x, 2~* < x < 2\
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