Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the numerical evaluation of the Stokes' stream function

Author: Donald Greenspan
Journal: Math. Comp. 11 (1957), 150-160
MSC: Primary 65.3X
MathSciNet review: 0090128
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Dorothy L. Bernstein, Existence Theorems in Partial Differential Equations, Annals of Mathematics Studies, no. 23, Princeton University Press, Princeton, N. J., 1950. MR 0037440
  • [2] L. Collatz, ``Bemerkungen zur Fehlerabschätzung für das Differenzenverfahren bei partiellen Differentialgleichungen,'' Zeit. angew. Math. Mech., v. 13, 1933, p. 56-57.
  • [3] R. Courant, & D. Hilbert, Methoden der Mathematischen Physik, Julius Springer, Berlin, 1937.
  • [4] Hilda Geiringer, On the solution of systems of linear equations by certain iteration methods, J. W. Edwards, Ann Arbor, Michigan, 1948. MR 0029272
  • [5] S. Gerschgorin, ``Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen,'' Zeit. angew. Math. Mech., v. 10, 1930, p. 373-382.
  • [6] Donald Greenspan, Methods of matrix inversion, Amer. Math. Monthly 62 (1955), 303–318. MR 0071861
  • [7] William Edmund Milne, Numerical solution of differential equations, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR 0068321
  • [8] George Shortley, Royal Weller, Paul Darby, and Edward H. Gamble, Numerical solution of axisymmetrical problems, with applications to electrostatics and torsion, J. Appl. Phys. 18 (1947), 116–129. MR 0019408
  • [9] NBS Applied Mathematics Series, No. 29, Simultaneous Linear Equations and the Determination of Eigenvalues, U. S. Gov. Printing Office, Washington, D. C., 1953.
  • [10] G. Temple, ``The general theory of relaxation methods applied to linear systems,'' Roy. Soc. London, Proc., v. 169, Ser. A, 1939, p. 476-500.
  • [11] J. L. Walsh and David Young, On the accuracy of the numerical solution of the Dirichlet problem by finite differences, J. Research Nat. Bur. Standards 51 (1953), 343–363. MR 0059634
  • [12] J. L. Walsh and David Young, On the degree of convergence of solutions of difference equations to the solution of the Dirichlet problem, J. Math. Physics 33 (1954), 80–93. MR 0060908
  • [13] D. M. Young, ``Numerical methods for solving partial differential equations,'' Mimeographed lecture notes, course at Ballistics Institute, Ball. Res. Lab., Aberdeen Proving Grounds, Maryland, 1951-1952.
  • [14] D. M. Young, ``On the solution of linear systems by iteration,'' Prelim. Report No. 9, Army Office of Ordnance Research, Project No. TB-2-0001 (407) with the Univ. of Maryland, 1953.
  • [15] David Young, Iterative methods for solving partial difference equations of elliptic type, Trans. Amer. Math. Soc. 76 (1954), 92–111. MR 0059635, 10.1090/S0002-9947-1954-0059635-7

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.3X

Retrieve articles in all journals with MSC: 65.3X

Additional Information

Article copyright: © Copyright 1957 American Mathematical Society