A Method for the Numerical Evaluation of Certain Infinite Integrals

The solution of many physical problems often necessitates the numerical evaluation of infinite real integrals, a common example being that of solutions obtained with the aid of integral transforms. The evaluation of such integrals is often a laborious task, particularly if the integrand is oscillatory, so that it is usual to resort to special methods which give information for certain ranges of values of the variables; methods of this type are those involving asymptotic expansions or the related techniques of steepest descent and of stationary phase. The purpose of the present note is to outline a method in which the value of such integrals is expressed in terms of a convergent series obtained by a modification of the corresponding asymptotic expansion. The development is given below for a special case only, namely one which might arise in conjunction with the use of sine transforms; it will be clear however that these results can be readily generalized to other types of integrals which are usually reduced to an asymptotic representation. Examples may be found in Erdélyi [1]. The method is thus valid whether the integrand is oscillatory or not; in fact, though the special integrand considered in detail below does oscillate, inspection of the convergence proofs shows that this fact is of little importance to the developments presented. A method which holds in the case of oscillatory integrands has been described by I. M. Longman [2].

Basic expansions. Consider a convergent integral \(I(a) \) of the form

\[
(1) \quad I(a) = \int_{a}^{\infty} f(x) \sin x \, dx; \quad f(x) \to 0 \text{ steadily as } x \to \infty.
\]

By \(f(x) \to 0 \) steadily, we mean that \(f(x_1) \geq f(x_2) > 0 \) if \(x_1 < x_2 \) and \(\lim f(x) = 0 \); see Whittaker and Watson [3]. \(N \) successive integrations by parts may be shown to give the following result

\[
(2) \quad I(a) = \sum_{i=0}^{N} f^{(i)}(a) \cos \left[a + i(\pi/2) \right] + \int_{a}^{\infty} f^{(N)}(x) \sin \left[x + N(\pi/2) \right] dx
\]

where \(f^{(i)} = (d^i f/dx^i) \), provided that \(f(x) \) is differentiable the required number of times, and that

\[
(2a) \quad f^{(i)}(x) \to 0 \text{ steadily as } x \to \infty; \quad i = 0, 1, 2, \ldots.
\]

The term in equation (2) containing the summation usually represents an asymptotic representation of \(I \) for large values of \(a \), and the infinite series obtained as \(N \) is increased indefinitely in general does not converge. A convergent expansion
for \(I(a) \) may now be derived in the following manner. Integration by parts gives

\[
I(a) = \int_a^{a_1} f(x) \sin x \, dx + f(a_1) \cos a_1 + \int_{a_1}^\infty f^{(1)}(x) \cos x \, dx
\]

and further

\[
I(a) = \int_a^{a_1} f(x) \sin x \, dx + \int_{a_1}^{a_2} f^{(1)}(x) \cos x \, dx + f(a_1) \cos a_1 - f^{(1)}(a_2) \sin a_2 - \int_{a_2}^{\infty} f^{(2)}(x) \sin x \, dx.
\]

Repetition of this process finally gives

\[
I(a) = \sum_{i=0}^{\infty} f^{(i)}(a_{i+1}) \cos [a_{i+1} + i(\pi/2)]
\]

\[
+ \sum_{i=0}^{\infty} \int_{a_i}^{a_{i+1}} f^{(i)}(x) \sin [x + i(\pi/2)] \, dx
\]

where one may set

\[
a_{i+1} > a_i; \quad a_0 = a.
\]

It will now be shown that the quantities \(a_i \) may be chosen in such a manner that the two series on the right-hand side of equation (4) converge.

Convergence of series expansion. The first series on the right-hand side of equation (4) will certainly converge if the \(a_i \)'s are chosen so that the series

\[
S_1 = \sum_{i=0}^{\infty} f^{(i)}(a_{i+1})
\]

converges; and this series will converge (absolutely) if a positive number \(\rho \) independent of \(i \) exists such that

\[
1 > \rho > |f^{(i)}(a_{i+1})/f^{(i-1)}(a_i)|
\]

for all \(i \geq 1 \). It will now be shown that such a choice of \(a_i \)'s is always possible. (The author is indebted to Dr. C. C. Chao for his valuable suggestions concerning this proof.)

Choose the quantity \(a_1 \geq a_0 \) arbitrarily; then the value of \(f^{(0)}(a_0) \) is known and \(a_2 \) must be selected so that

\[
|f^{(1)}(a_2)| < \rho \cdot |f^{(0)}(a_1)|
\]

as may always be done because of relation (2a). Now however the value of \(f^{(2)}(a_2) \) is known, and so \(a_3 \) can be chosen by a similar procedure. Repetition of this process yields values of all \(a_i \)'s in such a manner that relation (5a) is satisfied for all \(i \geq 1 \) and therefore series \(S_1 \) converges absolutely. It should be noted that the choice of \(a_i \)'s is not unique, and that in fact if such a choice has been made \(a_i = a_i', \text{ say} \) then the values \(a_i = a_i'' \) will also insure convergence of \(S_1 \) provided only that

\[
a_i'' \geq a_i'
\]

in view of the steadiness requirement of equation (2a).
It will now be shown that the \(a_i \)'s may be taken in conformity with requirement (6) and, in addition, so that the second series of equation (4), namely

\[
S_2 = \sum_{i=0}^{\infty} I_i; \quad I_i = \int_{a_i}^{a_{i+1}} f^{(i)}(x) \sin [x + i(\pi/2)]dx
\]

also converges. Note first that it follows from equation (2a) that, for any \(i \), a number \(A_i \) exists such that

\[
|f^{(i-1)}(x)| < |f^{(i-1)}(x)| \quad \text{for all } x_1 > x > A_i.
\]

Let now the quantities \(a_i \) be selected (consistently with inequality (6)), so that

\[
a_i > A_i.
\]

Because of equation (4a) then the relation

\[
|f^{(i-1)}(a_{i+1})/f^{(i-1)}(a_i)| < 1
\]

holds for all \(i \).

Consider now the integrals \(I_i \); because of the steadiness requirement in equation (2a) the quantity \(f^{(i)}(x) \) does not change sign within \(a_i \leq x \leq a_{i+1} \) and

\[
|I_i| < \int_{a_i}^{a_{i+1}} f^{(i)}(x)dx = |f^{(i-1)}(a_{i+1}) - f^{(i-1)}(a_i)| = |f^{(i-1)}(a_i)| 1 - \left[f^{(i-1)}(a_i + 1)/f^{(i-1)}(a_i) \right] | < |f^{(i-1)}(a_i)|; \quad i \neq 0
\]

in view of relation (7c). Series \(S_2 \) (with the possible omission of the first term) is then term-by-term less than the series

\[
2 \sum_{i=1}^{\infty} |f^{(i-1)}(a_i)| = 2 \sum_{i=0}^{\infty} |f^{(i)}(a_{i+1})|
\]

which has been shown to converge. Hence \(S_2 \) also converges.

Example. As an illustration of the procedure indicated above, the special case of \(f(x) = x^{-k} \) will be considered; thus

\[
I(a) = \int_{a}^{\infty} x^{-k} \sin xdx; \quad k > 0.
\]

Here one may take (as will be shown)

\[
a_i = a + i\alpha
\]

where \(\alpha \) is a constant; equation (4) then reduces to

\[
I(a) = S_1(a) + S_2(a)
\]

where

\[
S_1(a) = \sum_{i=1}^{\infty} \frac{(1)(k)(k + 1) \cdots (k + i - 2)}{(a + i\alpha)(k+i-1)} \sin [i(\pi/2 - \alpha) - a] - a
\]

\[
S_2(a) = \sum_{i=1}^{\infty} \frac{(1)(k)(k + 1) \cdots (k + i - 2)}{a+(i-1)a} x^{-(k+i-1)} \cos [i(\pi/2) - x]dx.
\]
Series S_1 converges if

\[
\lim_{i \to \infty} \frac{(k + i - 1)(a + i\alpha)^{(k+i-1)}}{[a + (i + 1)\alpha]^{(k+i)}}
\]

or in other words if

\[
\alpha > \frac{1}{e}.
\]

Series S_2 may now be considered by expanding the integrals it contains in a manner entirely analogous to that of equations (8a) and (8b), and it can thus be easily shown that this series also converges if α is chosen as specified in equation (10d); the latter condition then represents in the present case the only requirement for convergence of expansion (10a).

An advantageous choice of α, consistent with requirement (10d), is $\alpha = \pi/2$, since in this case the sine-term in S_1 is constant; in particular, if $a = 0$ (or $a = n\pi$), note that $S_1 = 0$. No choice of α is of course possible which will make $S_2 = 0$, so that numerical evaluations of integrals are still necessary. Series S_2 converges quite rapidly, however; as an example consider in fact the case of $a = 0$, $k = 1$ and $\alpha = \pi/2$ for which the value of the integral in question is well known. The result may be written as

\[
\left(\frac{2}{\pi}\right) \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{(i-1)!} i^{\frac{i}{2}} x^{-i} \cos \left[i(\pi/2) - x\right] dx.
\]

The integrals in this summation were evaluated by Simpson's rule with the relatively coarse interval of $(\pi/8)$. The value of the summation itself may be expressed as the limit of the sequence of the partial sums S_i of the first i terms of the series; the first few terms of this sequence were found to be as follows (to four significant figures):

(11a) \hspace{1cm} S_1 = .8727; \hspace{1cm} S_2 = .9762; \hspace{1cm} S_3 = .9951; \hspace{1cm} S_4 = .9988; \hspace{1cm} S_5 = .9996

and may therefore be said to converge fairly rapidly. Almost the same results were obtained when the coarser interval of $(\pi/4)$ was used in Simpson's rule.

Bruno A. Boley

This work is part of a project supported by the Office of Naval Research.