3. A Higher Order Formula. The formulas corresponding to (1) and (2) for an error of order h^{5} are as follows:

$$
\begin{align*}
y_{1} & =y_{0}+\frac{h}{24}\left[9 f\left(x_{0}, y_{0}\right)+19 f\left(x_{1}, y_{1}\right)-5 f\left(x_{2}, y_{2}^{*}\right)+f\left(x_{3}, y_{3}^{*}\right)\right]+0\left(h^{5}\right) \tag{16}\\
y_{2}^{*} & =y_{0}+\frac{h}{3}\left[f\left(x_{0}, y_{0}\right)+4 f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}^{*}\right)\right] \\
y_{3}^{*} & =9 y_{1}-8 y_{0}-3 h\left[f\left(x_{0}, y_{0}\right)+2 f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}^{*}\right)\right] .
\end{align*}
$$

These formulas are used to find y_{1} as follows:
a) Guess $y_{1}=y_{2}{ }^{*}(x-h), y_{2}{ }^{*}=y_{3}{ }^{*}(x-h)$.
b) Calculate improved values of $y_{3}{ }^{*}, y_{2}{ }^{*}, y_{1}$ in that order.
c) Repeat from b) until y_{1} has converged before proceeding to the next point.
Note that no starter formulas are required since initially we may guess $y_{0}=$ $y_{1}=y_{2}{ }^{*}=y_{3}{ }^{*}$ and proceed from b) above.
Nuclear Development Corporation of America, White Plains, New York

1. Herbert S. Wilf, "An open formula for the numerical integration of first order differential equations," MTAC, v. 11, 1957, p. 201-203.

TECHNICAL NOTES AND SHORT PAPERS

Note on the Computation of the Zeros of Functions Satisfying a Second Order Differential Equation

By D. J. Hofsommer

It has been pointed out by P. Wynn [1] that, if a function satisfies a second order differential equation, this fact may be used with advantage in the computation of its zeros. In his note he only pays attention to Richmonds formula which, incidentally, was already known to Schröder [2]. We will elaborate his idea to construct another iteration formula.

Let $f(x)$ be the function, the roots of which are to be computed. Let α be such a root and let x be a first approximation. If the approximation is sufficiently close,
(1) $\quad \alpha=x-f / f^{\prime}-\frac{1}{2}\left(f^{\prime \prime} / f^{\prime}\right)\left(f / f^{\prime}\right)^{2}-\frac{1}{6}\left[3\left(f^{\prime \prime} / f^{\prime}\right)^{2}-f^{\prime \prime \prime} / f^{\prime}\right]\left(f / f^{\prime}\right)^{3}+0\left[\left(f / f^{\prime}\right)^{4}\right]$.

This series may be used either for direct computation in taking enough terms, or for obtaining an iterative process if only few terms are retained. If $f(x)$ satisfies the homogeneous differential equation

$$
\begin{equation*}
f^{\prime \prime}=2 P f^{\prime}+Q f+2 S \tag{2}
\end{equation*}
$$

substitution in the series (1) yields

$$
\begin{align*}
\alpha= & x-f / f^{\prime}+\left(P+S / f^{\prime}\right)\left(f / f^{\prime}\right)^{2} \tag{3}\\
& -\frac{1}{3}\left(4 P^{2}-P^{\prime}+Q+10 P S / f^{\prime}+S^{\prime} / f^{\prime}+6 S^{2} / f^{\prime 2}\right)\left(f / f^{\prime}\right)^{3}+0\left[\left(f / f^{\prime}\right)^{4}\right]
\end{align*}
$$

[^0]or,
\[

$$
\begin{align*}
\alpha & =x-f / f^{\prime}-\left(P+S / f^{\prime}\right)\left(f / f^{\prime}\right)^{2}+0\left[\left(f / f^{\prime}\right)^{3}\right] \tag{4}\\
& =x-\frac{1}{f^{\prime} / f-P-S / f^{\prime}}+0\left[\left(f / f^{\prime}\right)^{3}\right] \tag{5}
\end{align*}
$$
\]

From (4) and (5) it follows that the iterative processes

$$
\begin{equation*}
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)-\left[P\left(x_{k}\right)+S\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)\right]\left[f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)\right]^{2} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right) / f\left(x_{k}\right)-P\left(x_{k}\right)-S\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)} \tag{7}
\end{equation*}
$$

are cubically convergent.
Wynn's process gives

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right) / f\left(x_{k}\right)-P\left(x_{k}\right)-S\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)-\frac{1}{2} Q\left(x_{k}\right) f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)}
$$

if $f(x)$ satisfies (2).
From equality (7) it is seen that the last term in the denominator may be left out without affecting the order of the iteration process.

For comparison we have calculated by aid of (7) the first three zeros of J_{0} with one iteration step. The results are
$x_{0} \quad x_{1} \quad x_{1}$ (Wynn)

2.405	2.404825	557	694	2.404825	557	697
5.520	5.520	078	110	286	5.520	078
8.654	8.653	727	912904	8.653	727	912
8.614						

Of course one iteration step amounts to using the development (4) or (5). If in such a case the required accuracy is almost, but not quite, obtained, application of (3) is preferable to taking a second iteration step.

In such a way we have calculated the zeros of $P_{37}(\cos \varphi)$. Using Smith's table [3] the zeros φ_{m} were found in hundredths of a degree. Then new values for φ_{m} were calculated by aid of (3) or (4) using the NBS tables [4]. In this way interpolation was avoided. We found

m	φ_{m} (radians)	m	φ_{m} (radians)
		9	0.8168974876
0	1.5707963268	10	0.7331369028
1	1.4870279834	11	0.6493794383
2	1.4032597455	12	0.5656265169
3	1.3194917255	13	0.4818805368
4	1.2357240479	14	0.3981458831
5	1.1519568593	15	0.3144315401
6	1.0681903387	16	0.2307593047
7	0.9844247150	17	0.1471977156
8	0.9006602917	18	0.0641267810

The approximation in hundredths of a degree could have been obtained also by
starting with the approximation for the zeros of $P_{n}(\cos \varphi)$

$$
\begin{array}{ll}
\varphi_{m} \doteqdot\left(\frac{1}{2}-\frac{2 m}{2 n+1}\right) \pi, & n \text { odd } \\
\varphi_{m} \doteqdot\left(\frac{1}{2}-\frac{2 m+1}{2 n+1}\right) \pi, & n \text { even }
\end{array}
$$

and applying one Newton step $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$.
Finally we remark that if $f(x)$ is a member of a set $f_{n}(x)$, it often happens that $f_{n}{ }^{\prime}(x)$ satisfies a recurrence relation

$$
f_{n}^{\prime}(x)=A(x) f_{n-1}(x)+B(x) f_{n}(x)
$$

It then may be useful to transform

$$
f_{n}^{\prime}\left(x_{k}\right) / f_{n}\left(x_{k}\right)=A\left(x_{k}\right) f_{n-1}\left(x_{k}\right) / f_{n}\left(x_{k}\right)+B\left(x_{k}\right),
$$

especially if $f_{n}(x)$ is tabulated and $f_{n}{ }^{\prime}(x)$ not or if the tables of $f_{n}(x)$ are more extensive than those of $f_{n}{ }^{\prime}(x)$.
Mathematical Centre, Computation Department, Amsterdam, Netherlands

1. P. Wynn, "On a cubically convergent process for determining the zeros of certain functions," MTAC, v. 10, 1956, p. 97-100.
2. E. Schröder, "Ueber unendlich viel Algorithmen zur Auflösung der Gleichungen," Math. Ann., v. 2, 1870, p. 317-363.
3. E. R. Smith \& Archie Higdon, "Zeros of the Legendre polynomials," Jn. Science, Iowa State College, v. 12, 1938, p. 263-274." (MTAC, Rev. 132, v. 1, 1944, p. 153-514.)
4. NBSCL, Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree (NBS Applied Math. Series, no. 5), Govt. Printing Office, Washington, 1949. (MTAC, Rev. 662, v. 3, 1949, p. 515-516.)

A New Mersenne Prime

by Hans Riesel

On September 8, 1957, the Swedish electronic digital computer BESK established that the Mersenne number $M_{3217}=2^{3217}-1$ is a prime. The result was recalculated on September 12. The method used for testing this number was a Lucas' test, and the running time was $5^{h} 30^{m}$. The new prime has 969 decimal digits and on the BESK was found to be

$2^{3217}-1$							
2	59117086	01320262	77762467	67922441	53094181	88875531	25427303
97492316	18740192	66586362	08620120	95168004	83406550	69524173	31941774
41689509	23880701	74103777	09597512	04231306	66240829	16353517	95231118
61548622	65604547	69112759	58487756	10568757	93119101	77114088	26252153
84903583	04011850	72116424	74746182	30314713	98340229	28807454	56779079
41037288	23582070	58923510	68433882	98688861	66586502	80927692	08033960
58693087	90500409	50370987	59021190	18371991	62099400	25689351	13136548
82973911	26567973	03241986	51725011	64127035	09705427	77347797	23498216
76443446	66838311	93225400	99648994	05179024	16240565	19054483	69080961
60616257	43042361	72186333	94158524	26431208	73726659	19620617	53535748
89289459	96291951	83082621	86085340	09379328	39420261	86658614	25032514
50773096	27423537	68229386	49407127	70084607	71242118	23080804	13929808
70575047	13825264	57144837	93711250	32081826	12656664	90842516	99453951
88778961	36502484	05739378	59459944	43352311	88280123	66040626	24686092
12150349	93758478	22922371	44339628	85848593	82157388	21232393	68704616
06773629	09315071						

Received 8 November 1957.
Ormängsgatan 67,
Stockholm, Sweden

[^0]: Received 3 May 1957.

