3. A Higher Order Formula. The formulas corresponding to (1) and (2) for an error of order h^3 are as follows:

\begin{align*}
(16) \quad y_1 &= y_0 + \frac{h^3}{24} \left[9f(x_0, y_0) + 19f(x_1, y_1) - 5f(x_2, y_2^*) + f(x_3, y_3^*) \right] + O(h^4) \\
(17) \quad y_2^* &= y_0 + \frac{h^3}{3} \left[f(x_0, y_0) + 4f(x_1, y_1) + f(x_2, y_2^*) \right] \\
(18) \quad y_3^* &= 9y_1 - 8y_0 - 3h \left[f(x_0, y_0) + 2f(x_1, y_1) - f(x_2, y_2^*) \right].
\end{align*}

These formulas are used to find y_1 as follows:

a) Guess $y_1 = y_2^*(x - h), \quad y_2^* = y_3^*(x - h)$.

b) Calculate improved values of y_3^*, y_2^*, y_1 in that order.

c) Repeat from b) until y_1 has converged before proceeding to the next point.

Note that no starter formulas are required since initially we may guess $y_0 = y_1 = y_2^* = y_3^*$ and proceed from b) above.

Nuclear Development Corporation of America,
White Plains, New York

TECHNICAL NOTES AND SHORT PAPERS

Note on the Computation of the Zeros of Functions Satisfying a Second Order Differential Equation

By D. J. Hofsommer

It has been pointed out by P. Wynn [1] that, if a function satisfies a second order differential equation, this fact may be used with advantage in the computation of its zeros. In his note he only pays attention to Richmonds formula which, incidentally, was already known to Schröder [2]. We will elaborate his idea to construct another iteration formula.

Let $f(x)$ be the function, the roots of which are to be computed. Let α be such a root and let x be a first approximation. If the approximation is sufficiently close, then

\begin{equation}
\alpha = x - f/f' - \frac{1}{6}(f''/f')^2 - \frac{1}{6} [3(f''/f')^2 - f'''/f'](f/f')^3 + O[(f/f')^4].
\end{equation}

This series may be used either for direct computation in taking enough terms, or for obtaining an iterative process if only few terms are retained. If $f(x)$ satisfies the homogeneous differential equation

\begin{equation}
f'' = 2Pf' + Qf + 2S,
\end{equation}

substitution in the series (1) yields

\begin{equation}
\alpha = x - f/f' + (P + S/f')(f/f')^2 - \frac{1}{6} (4P^2 - P' + Q + 10PS/f' + S'/f' + 6S^2/f'^2)(f/f')^3 + O[(f/f')^4].
\end{equation}

Received 3 May 1957.
or,

\[\alpha = x - \frac{f}{f'} - (P + S/f') (f/f')^2 + 0[(f/f')^3] \]

\[= x - \frac{1}{f'/f - P - S/f'} + 0[(f/f')^3] \]

From (4) and (5) it follows that the iterative processes

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{P(x_k) + S(x_k)/f'(x_k)}{f(x_k)/f'(x_k)} \]

or

\[x_{k+1} = x_k - \frac{1}{f'(x_k)/f(x_k) - P(x_k) - S(x_k)/f'(x_k)} \]

are cubically convergent.

Wynn's process gives

\[x_{k+1} = x_k - \frac{1}{f'(x_k)/f(x_k) - P(x_k) - S(x_k)/f'(x_k) - \frac{1}{2}Q(x_k)f(x_k)/f'(x_k)} \]

if \(f(x) \) satisfies (2).

From equality (7) it is seen that the last term in the denominator may be left out without affecting the order of the iteration process.

For comparison we have calculated by aid of (7) the first three zeros of \(J_0 \) with one iteration step. The results are

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_1) (Wynn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.405</td>
<td>2.404 825 557 694</td>
<td>2.404 825 557 697</td>
</tr>
<tr>
<td>5.520</td>
<td>5.520 078 110 286</td>
<td>5.520 078 110 286</td>
</tr>
<tr>
<td>8.654</td>
<td>8.653 727 912 904</td>
<td>8.653 727 912 914</td>
</tr>
</tbody>
</table>

Of course one iteration step amounts to using the development (4) or (5). If in such a case the required accuracy is almost, but not quite, obtained, application of (3) is preferable to taking a second iteration step.

In such a way we have calculated the zeros of \(P_{37} (\cos \phi) \). Using Smith's table [3] the zeros \(\phi_m \) were found in hundredths of a degree. Then new values for \(\phi_m \) were calculated by aid of (3) or (4) using the NBS tables [4]. In this way interpolation was avoided. We found

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\phi_m) (radians)</th>
<th>(m)</th>
<th>(\phi_m) (radians)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.570 796 326 8</td>
<td>9</td>
<td>0.816 897 487 6</td>
</tr>
<tr>
<td>1</td>
<td>1.487 027 983 4</td>
<td>10</td>
<td>0.733 136 902 8</td>
</tr>
<tr>
<td>2</td>
<td>1.403 259 745 5</td>
<td>11</td>
<td>0.649 379 438 3</td>
</tr>
<tr>
<td>3</td>
<td>1.319 491 725 5</td>
<td>12</td>
<td>0.565 626 516 9</td>
</tr>
<tr>
<td>4</td>
<td>1.235 724 047 9</td>
<td>13</td>
<td>0.481 880 536 8</td>
</tr>
<tr>
<td>5</td>
<td>1.151 956 859 3</td>
<td>14</td>
<td>0.398 145 883 1</td>
</tr>
<tr>
<td>6</td>
<td>1.068 190 338 7</td>
<td>15</td>
<td>0.314 431 540 1</td>
</tr>
<tr>
<td>7</td>
<td>0.984 424 715 0</td>
<td>16</td>
<td>0.230 759 304 7</td>
</tr>
<tr>
<td>8</td>
<td>0.900 660 291 7</td>
<td>17</td>
<td>0.147 197 715 6</td>
</tr>
</tbody>
</table>

The approximation in hundredths of a degree could have been obtained also by
starting with the approximation for the zeros of \(P_n(\cos \varphi) \)

\[
\varphi_m \approx \left(\frac{1}{2} - \frac{2m}{2n + 1} \right) \pi, \quad n \text{ odd}
\]

\[
\varphi_m \approx \left(\frac{1}{2} - \frac{2m + 1}{2n + 1} \right) \pi, \quad n \text{ even}
\]

and applying one Newton step \(x_{k+1} = x_k - f(x_k) / f'(x_k) \).

Finally we remark that if \(f(x) \) is a member of a set \(f_n(x) \), it often happens that \(f_n'(x) \) satisfies a recurrence relation

\[
f_n'(x) = A(x) f_{n-1}(x) + B(x) f_n(x).
\]

It then may be useful to transform

\[
f_n'(x_k) / f_n(x_k) = A(x_k) f_{n-1}(x_k) / f_n(x_k) + B(x_k),
\]

especially if \(f_n(x) \) is tabulated and \(f_n'(x) \) not or if the tables of \(f_n(x) \) are more extensive than those of \(f_n'(x) \).

Mathematical Centre, Computation Department, Amsterdam, Netherlands

A New Mersenne Prime

by Hans Riesel

On September 8, 1957, the Swedish electronic digital computer BESK established that the Mersenne number \(M_{217} = 2^{217} - 1 \) is a prime. The result was re-calculated on September 12. The method used for testing this number was a Lucas' test, and the running time was \(5^a 30^m \). The new prime has 969 decimal digits and on the BESK was found to be

\[
2^{217} - 1
\]

Received 8 November 1957.

Ormångsgatan 67,

Stockholm, Sweden

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use