Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Note on bivariate linear interpolation for analytic functions


Author: Walter Gautschi
Journal: Math. Comp. 13 (1959), 91-96
MSC: Primary 65.00
DOI: https://doi.org/10.1090/S0025-5718-1959-0105786-6
MathSciNet review: 0105786
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. N. Faddeeva and N. M. Terent′ev, Tablicy značeniĭ funkcii 𝑤(𝑧)=𝑒^{-𝑧²}(1+\frac{2𝑖}√𝜋∫^{𝑧}₀𝑒^{𝑡²}𝑑𝑡) ot kompleksnogo argumenta, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1954 (Russian). MR 0068895
  • [2] Harvard University, Tables of the function arcsinz, The annals of the Computation Laboratory, v. 40, 1956.
  • [3] K. A. Karpov, Tablicy funkcii $ w(z) = {e^{ - {z^2}}}\int_0^z {{e^{{x^2}}}} dx\upsilon $ kompleksnoi oblasti, Izdat. Akad. Nauk SSSR, Moscow, 1954.
  • [4] K. A. Karpov, \cyr Tablitsy funktsii 𝐹(𝑧)=∫^{𝑧}₀𝑒^{𝑥²}𝑑𝑥 \cyr v kompleksnoĭ oblasti, Akad. Nauk SSSR. Vyčislitel’nyĭ Centr. Matematičeskie Tablicy, Izdat. Akad. Nauk SSSR, Moscow, 1958 (Russian). MR 0135247
  • [5] National Bureau of Standards, Table of the Bessel Functions $ {J_0}(z)$ and $ {J_1}(z)$ for complex arguments, 2nd ed., Columbia University Press, New York, 1947.
  • [6] National Bureau of Standards, Table of the Bessel Functions $ {Y_0}(z)$ and $ {Y_1}(z)$ for complex arguments, Columbia University Press, New York, 1950.
  • [7] National Bureau of Standards, Table of the gamma function for complex arguments, Applied Math. Series 34, 1954.
  • [8] National Bureau of Standards, Tables of the exponential integral for complex arguments, Applied Math. Series 51, 1958.
  • [9] Herbert Salzer E., Coefficients for polar complex interpolation, J. Math. Physics 29 (1950), 96–104. MR 0036082
  • [10] Herbert E. Salzer, Osculatory interpolation in the complex plane, J. Res. Nat. Bur. Standards 54 (1955), 263–266. MR 0070258, https://doi.org/10.6028/jres.054.029
  • [11] Heinz Unger, Lagrange-Hermitische Interpolation im Komplexen, Z. Angew. Math. Physik 3 (1952), 51–65 (German). MR 0047400

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.00

Retrieve articles in all journals with MSC: 65.00


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1959-0105786-6
Article copyright: © Copyright 1959 American Mathematical Society