Numerical Quadrature Over a Rectangular Domain in Two or More Dimensions

Part 3. Quadrature of a Harmonic Integrand

By J. C. P. Miller

1. Introduction. In Part 1 [1], §5, formula (B), §7, formula (B'), and in §9; also in Part 2 [2] in several places, we have seen how the error term is very much reduced if the integrand \(f(x, y) \) is a harmonic function, that is, if \(\nabla^2 f = 0 \). In this note we pursue further this special case, in which especially high accuracy is attainable with few points.

It may not be often that the integrand will have this special form, but it seems worthwhile to develop a few of the interesting formulas. We start by obtaining expansions for \(n \) variables, and more extensive ones for two variables, and then obtain and consider special quadrature formulas.

2. Expansions. As in Part 2 [2] §2, we develop \(f(x_1, x_2, \cdots, x_n) \) as a Taylor series in even powers of each of the variables \(x_r \). Then, using \(\nabla^2 f = 0 \), we write

\[
J = I/(2h)^n = (2h)^{-n} \left(\int_{-h}^{h} \right)^n f(x_1, x_2, \cdots, x_n) \, dx_1 \, dx_2 \cdots \, dx_n
\]

(2.1)

where, as before, extended,

\[
\varphi f_0 = \sum \frac{\partial^r f_0}{\partial x_r^2 \partial x_s^2} \quad \gamma f_0 = \sum \frac{\partial^s f_0}{\partial x_r^2 \partial x_s^2 \partial x_t^2} \quad \xi f_0 = \sum \frac{\partial^{r+s} f_0}{\partial x_r^2 \partial x_s^2 \partial x_t^2 \partial x_u^2}
\]

etc., the summations extending over all possible combinations of \(r, s, t, \cdots \) with no two equal.

Labelling the symmetrical sets of points as in Part 2, we have likewise the expansions for sums of values of \(f \) over the sets

Received December 30, 1959. This work was supported in part by the Office of Naval Research.
(2.31) \(f_0 \)

(2.32) \(\alpha(a) \quad 2n f_0 - \frac{4h^4a^4}{4!} D^4 f_0 + \frac{6h^6a^6}{6!} s^6 f_0 + \frac{4h^8a^8}{8!} (x^8 - 2\xi^8) f_0 \)
\[- \frac{10h^{10}a^{10}}{10!} (y^8 - \sigma^{10}) f_0 \]
\[- \frac{2h^{12}a^{12}}{12!} (2D^{12} - 33^{12}) \]
\[- 6D^4\xi^8 + 6\xi^{12}) f_0 + \cdots \]

(2.33) \(\beta(b) \quad 2n(n-1)f_0 - \frac{8h^4b^4}{4!} (n-4) D^4 f_0 + \frac{12h^6b^6}{6!} (n-16) s^6 f_0 \)
\[+ \frac{8h^8b^8}{8!} [(n+6) D^8 - 2(n-64)\xi^8] f_0 \]
\[- \frac{20h^{10}b^{10}}{10!} [(n-4) D^8 - (n-256)\sigma^{10}] f_0 \]
\[- \frac{4h^{12}b^{12}}{12!} [2(n-34) D^{12} - 3(n+362)\xi^{12}] \]
\[- 6(n-728) D^4\xi^8 + 6(n-1024)\xi^{12}] f_0 + \cdots \]

(2.34) \(\gamma(c, d) \quad 4n(n-1)f_0 - \frac{8h^4}{4!} [(n-1)(c^4 + d^4) - 6c^2d^2] D^4 f_0 \)
\[+ \frac{12h^6}{6!} [(n-1)(c^6 + d^6) - 15c^2d^2(c^4 + d^4)] s^6 f_0 \]
\[+ \frac{8h^8}{8!} [((n-1)(c^8 + d^8) - 28c^2d^2(c^4 + d^4) + 70c^6d^6] D^8 \]
\[- 2(n-1)(c^8 + d^8) - 28c^2d^2(c^4 + d^4) - 70c^6d^6] \xi^8 f_0 \]
\[+ \cdots \]

(2.35) \(\epsilon(e) \quad \frac{4}{3} n(n-1)(n-2)f_0 - \frac{8h^4e^4}{4!} (n-2)(n-7) D^4 f_0 \)
\[+ \frac{12h^6e^6}{6!} (n^2 - 33n + 122) s^6 f_0 \]
\[+ \frac{8h^8e^8}{8!} [(n-2)(n+13) D^8 - 2(n^2 - 129n + 1094)\xi^8] f_0 \]
\[+ \cdots \]

We recall that 0 is the origin, or centre of the square, \(\alpha(a) \) includes all points with one coordinate \(\pm ah \) and the rest zero, \(\beta(b) \) has two coordinates each independently \(\pm bh \) and the rest zero, \(\gamma(c, d) \) has one coordinate \(\pm ch \), another \(\pm dh \) and the rest zero, and finally \(\epsilon(e) \) has three coordinates each independently \(\pm eh \) with the rest zero.
3. Expansions over a Square. Such expansions are simpler since $\xi^0 f_0$, $\xi^1 f_0$ etc., are absent. They can be obtained by analysis with the detached operators—in particular D; we proceed to obtain expansions with general terms.

If $F(z) = u + iv$ is a function of a complex variable $z = x + iy$ then both u and v are harmonic functions satisfying $D_x^2 \phi + D_y^2 \phi = 0$. Likewise, if u is a harmonic function, it can be shown that v exists such that $u + iv$ is a function of a complex variable. We then have

$$D_v F = iF' = iD_x F$$

and

$$D_x D_v = D^2 = iD_x^2 = -iD_v^2.$$

In order to develop expansions we therefore substitute

$$(3.2) \quad D_x = i^{-1/2}D, \quad D_v = i^{1/2}D.$$

Consider, firstly

$$(3.3) \quad J = (2\eta)^{-1} \int_x^h \int_y^h f(x, y) \, dx \, dy = \frac{1}{4h^2D_x D_v} (e^{hD_x} - e^{-hD_x})(e^{hD_y} - e^{-hD_y}) f_0.$$

The operator is

$$(3.4) \quad \begin{cases} \sinh hD_x \sinh hD_y = \frac{\sinh i^{-1/2}hD \sinh i^{1/2}hD}{h^2D_x D_v} \\ = \frac{1}{2} \left(\cosh (i^{1/2} + i^{-1/2})hD - \cosh (i^{1/2} - i^{-1/2})hD \right) \\ = \frac{1}{2} \cosh \sqrt{2h}D - \cos \sqrt{2h}D \end{cases}$$

whence

$$(3.5) \quad J = \left(\frac{2}{2!} + \frac{2^3h^4}{6!} D^4 + \frac{2^5h^8}{10!} D^8 + \cdots + \frac{2^{4r+1}h^{4r}}{(4r+2)!} D^{4r} + \cdots \right) f_0.$$

Likewise

$$\sum_{a(0)} f(x_a, y_a) = (e^{ahD_x} + e^{-ahD_x} + e^{ahD_y} + e^{-ahD_y}) f_0 = 2 (\cosh ahD_x + \cosh ahD_y) f_0 = 2 (\cosh i^{-1/2}ahD + \cosh i^{1/2}ahD) f_0,$$

$$= 4 \cosh \frac{ah}{\sqrt{2}}D \cos \frac{ah}{\sqrt{2}}D f_0 = 4 \left[1 - \frac{a^4h^4}{4!} D^4 + \frac{a^8h^8}{8!} D^8 + \cdots + (-1)^r \frac{a^{4r}h^{4r}}{(4r)!} D^{4r} + \cdots \right] f_0$$

and

$$\sum_{b(0)} f(x_b, y_b) = 4 \cosh bhD_x \cosh bhD_y f_0 = 4 \cosh i^{-1/2}bhD \cosh i^{1/2}bhD f_0,$$

$$= 2 \cosh bh\sqrt{2}D + \cos bh\sqrt{2}D f_0 = 4 \left[1 + \frac{2bh^4}{4!} D^4 + \frac{2^2b^8h^8}{8!} D^8 + \cdots + \frac{2^{4r}b^{4r}h^{4r}}{(4r)!} D^{4r} + \cdots \right] f_0.$$
We shall not use all the expansions given above in the present note, but it seems useful to set out the collected results for future use.

4. Lattice-point Formulas over a Square. We consider first formulas in two variables, and start with 9 points, putting $a = b = 1$ and using the sets $0, \alpha(1), \beta(1)$. We write

\[J = I/4h^2 = A_0f(0, 0) + \sum A_\alpha f(x_\alpha, y_\alpha) + \sum A_\beta f(x_\beta, y_\beta) \]

using (x_α, y_α) etc. as typical sets of coordinates.

Using (3.5) to (3.7), we equate coefficients of $\mathcal{D}^r f_0$, $r = 0(1)2$. This gives

\begin{align*}
A_0 + 4A_\alpha + 4A_\beta &= 1 \\
-4A_\alpha + 16A_\beta &= \frac{1}{12} \\
+4A_\alpha + 64A_\beta &= \frac{1}{48}
\end{align*}

with correction term

\[C = -\left(-4A_\alpha + 256A_\beta - \frac{64}{91}\right)h^{12/12!}\mathcal{D}^{12}f_0. \]

We obtain the formula

\begin{array}{ccc}
7 & -32 & 7 \\
-32 & 1000 & -32 \\
7 & -32 & 7
\end{array} \div 900

\[(4.3) \]

with main correction term $-\frac{1952}{1365} h^{12/12!}\mathcal{D}^{12}f_0$.

This formula is remarkably good. With the example of Part I, we have, writing $J' = h^2J$

\[J' = \frac{1}{4} \int \int \sin x \sinh y \ dx \ dy = \frac{1}{4} (1 - \cos 1.2) (\cosh 1.2 - 1) \]

\[\div 0.12922705907367511602 \]

Formula (4.3) gives

\[J' \div 0.12922705907283411029 \]

with $E = -0.0^{38} 841 00573$ and $C = +0.0^{03} 841 01633$.

5. Five-point Formulas. The high precision of (4.3) suggests that formulas of lesser precision, with fewer points, may be useful. We use the first two of (4.2) and take one of A_0, A_α, A_β to be zero.

(i) $A_0 = 0$ gives an eight-point formula with relatively poor precision.

\begin{array}{ccc}
19 & 56 & 19 \\
56 & 0 & 56 \\
19 & 56 & 19
\end{array} \div 300

\[(5.1) \]

with main correction term $-40 \frac{h^8}{9!}\mathcal{D}^8f_0$.

(ii) $A_\alpha = 0$ gives

\begin{array}{ccc}
1 & 0 & 1 \\
0 & 56 & 0 \\
1 & 0 & 1
\end{array} \div 60

\[(5.2) \]

with main correction term $-\frac{32}{5} \frac{h^8}{9!}\mathcal{D}^8f_0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(iii) \(A_\beta = 0 \) gives

\[
\begin{pmatrix}
0 & -1 & 0 \\
-1 & 19 & -1 \\
0 & -1 & 0
\end{pmatrix}
\] with main correction term \(+ \frac{28}{5} \frac{h^8}{9!} \partial^3 f_0 \).

We observe that (5.2) and (5.3) combine in the proportions \(\frac{1}{15} : \frac{1}{5} \) to give (4.3), though without an error estimate! Likewise \(\frac{4}{5} \times (5.2) - \frac{4}{5} \times (5.3) \) gives (B) of Note I, and an estimate for the correction, namely \(-\frac{112}{5} \frac{h^8}{9!} \partial^3 f_0 \) when \(f(x, y) \) is harmonic.

Another combination, that of (5.2) and (5.3) in equal proportions, gives a small correction term:

\[
\begin{pmatrix}
1 & -4 & 1 \\
-4 & 132 & -4 \\
1 & -4 & 1
\end{pmatrix}
\] with main correction term \(-\frac{4}{5} \frac{h^8}{9!} \partial^3 f_0 \).

Again \(4 \times (5.2) - 3 \times (5.3) \) gives small multipliers:

\[
\begin{pmatrix}
1 & 3 & 1 \\
3 & -1 & 3 \\
1 & 3 & 1
\end{pmatrix}
\] with main correction term \(-\frac{212}{5} \frac{h^8}{9!} \partial^3 f_0 \).

Evidently (4.3) is most precise, but simultaneous use of (5.2) and (5.3) gives an idea of the precision attained, and readily yields the better result if desired. Formula (5.5) might be helpful with desk computing, but (5.1) has little to recommend it.

Numerical results for some of the formulas using the example of §4 are as follows:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Result</th>
<th>(10^{10} \times E)</th>
<th>(10^{10} \times C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5.1)</td>
<td>0.12922 72986</td>
<td>+2395</td>
<td>-2396</td>
</tr>
<tr>
<td>(5.2)</td>
<td>0.12922 70974</td>
<td>+383</td>
<td>-383</td>
</tr>
<tr>
<td>(5.3)</td>
<td>0.12922 70255</td>
<td>-336</td>
<td>+335</td>
</tr>
<tr>
<td>(5.4)</td>
<td>0.12922 71932</td>
<td>+1341</td>
<td>-1342</td>
</tr>
</tbody>
</table>

6. General \(n; 2n^2 + 1 \) Points. We consider now the \(n \)-dimensional case, \(n \geq 3 \), using lattice points \(0, \alpha(1), \beta(1) \). In this case the term in \(\partial^3 f_0 \) is relevant, and the \(\partial^3 f_0 \) term will appear in the error, except when \(n = 3 \).

We equate coefficients of \(f_0, \partial^3 f_0, \partial^3 f_0 \) in the expansions resulting from use of (2.1), (2.31)-(2.33) in (4.1). We obtain
\[
A_0 + 2n A_0 + 2n(n - 1) A_\beta = 1
- 4 A_0 - 8(n - 4) A_\beta = 1
+ 6 A_0 + 12(n - 16) A_\beta = \frac{1}{11}
\]

while
\[
C = - \left\{ 4A_0 + 8(n + 6)A_\beta - \frac{16}{45} \int \frac{h^8}{8!} f_0 + \left\{ 8A_0 + 16(n - 64)A_\beta + \frac{192}{45} \int \frac{h^8}{8!} g_0. \right\}
\]

These yield
\[
A_0 = \frac{-61n^2 + 931n + 3780}{3780}, \quad A_\alpha = \frac{61n - 496}{3780}, \quad A_\beta = -\frac{61}{7560}
\]
with
\[
C = \frac{1198 h^8}{945 \cdot 8!} f_0 + \frac{3619 h^8}{315 \cdot 8!} g_0.
\]

In particular
\[
(6.33) \quad n = 3 \quad A_0 = \frac{12048}{7560}, \quad A_\alpha = -\frac{626}{7560}, \quad A_\beta = -\frac{61}{7560}
\]
\[
(6.34) \quad n = 4 \quad A_0 = \frac{13056}{7560}, \quad A_\alpha = -\frac{504}{7560}, \quad A_\beta = -\frac{61}{7560}
\]
\[
(6.35) \quad n = 5 \quad A_0 = \frac{13820}{7560}, \quad A_\alpha = -\frac{382}{7560}, \quad A_\beta = -\frac{61}{7560}
\]
\[
(6.36) \quad n = 6 \quad A_0 = \frac{14340}{7560}, \quad A_\alpha = -\frac{260}{7560}, \quad A_\beta = -\frac{61}{7560}
\]

As a numerical illustration for \(n = 3 \) we consider
\[
J = \frac{1}{8} I = \frac{1}{8} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \cos^3 \frac{3}{4} x \cos \frac{3}{4} y \cosh \frac{5}{4} z \, dx \, dy \, dz
= \frac{16}{15} \sin^3 \frac{3}{4} \sin 1 \sinh \frac{5}{4} = 0.9800827.
\]

Formula (6.33) gives \(J = 0.9799734 \) with \(E = -0.0000109 \) and \(C = +0.0000110 \).

This result is less spectacular than that of §4, for these reasons:

i) In §4, \(h = 0.6 \), here \(h = 1 \), and the correction term in (4.3) contains a high power of \(h \).

ii) The correction term in (6.2) is of order \(h^8 \), that in (4.3) is of order \(h^{12} \).

iii) The higher the number of dimensions, the more individual terms there are in \(D^8 f, D^{12} f \), etc. In (4.3) there is only one term in \(D^{12} f \), in (6.33) there are 9 in \(D^8 f \).

iv) The effect of larger interval \(h \) is enhanced by the use of the factor \(\frac{4}{3} \), which exceeds unity, in \(\cosh \frac{4}{3} z \); this is only partially balanced by the factor \(\cos \frac{4}{3} x \).

In spite of these points, the formula (6.2) seems a good one.

7. Quadrature over a Square; Specially Chosen Points. Since the expansions
of §3 involve only cross-differences $D^4 f_0$, it appears likely that use of sets of diagonal points β will be more profitable than attempts to use sets α. It turns out that sets $0, \alpha(a), \beta(b)$ and $0, \alpha(a)$ both fail to give real values of α if maximum precision is sought. On the other hand, we can get several formulas making use of any number of sets $\beta(b_p), p = 0(1)r$, both with and without the point 0.

We start first with r sets $\beta(b_p)$, without the point 0. We have to find the $2r$ constants A_{β_p}, b_p satisfying the equations

$$(7.1) \quad \sum_{p=1}^{r} 4A_{\beta_p} b_p^{s(s-1)} = \frac{1}{(2s-1)(4s-3)} = C_{s-1}, \quad s = 1(1)2r$$

obtained by substitution of (3.5) to (3.7) in

$$(7.2) \quad J = \sum A_{\beta_p} f(\pm b_p h, \pm b_p h)$$

and equating the coefficients of the first $2r$ coefficients of D^4. Sundry powers of 4 have been cancelled.

By familiar arguments, the b_p, are roots of the equation

$$(7.3) \quad \begin{vmatrix} 1 & x & x^2 & \cdots & x^r \\ C_0 & C_1 & C_2 & \cdots & C_r \\ C_1 & C_2 & C_3 & \cdots & C_{r+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_r & C_{r-1} & C_{r-2} & \cdots & C_{2r-1} \end{vmatrix} = 0.$$

These are the orthogonal polynomials for the weight function $w(x) = \frac{1}{2}(x^{-3/4} - x^{-1/2})$ and range $0 \leq x \leq 1$. The first two are

$$(7.4) \quad \begin{cases} 15x - 1 = 0 \\ 819x^2 - 438x + 11 = 0. \end{cases}$$

The main correction term is obtained from the next power of D^4 and yields

$$(7.5) \quad C = \left(C_r - \sum_{p=1}^{r} 4A_{\beta_p} b_p^{s+1} \right) \frac{2^s h^s D^s}{(8r)!} f_0.$$

If the point 0 is included, our equations (7.1) are replaced by

$$(7.6) \quad \begin{cases} A_0 + 4 \sum_{p=1}^{r} A_{\beta_p} = 1 \\ \sum_{p=1}^{r} 4A_{\beta_p} b_p^{s+1} = \frac{1}{(2s+1)(4s+1)} = C_s, \quad s = 1(1)2r \end{cases}$$

and the b_p, are roots of the equation

$$(7.3) \quad \begin{vmatrix} 1 & x & x^2 & \cdots & x^r \\ C_0 & C_1 & C_2 & \cdots & C_r \\ C_1 & C_2 & C_3 & \cdots & C_{r+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_r & C_{r-1} & C_{r-2} & \cdots & C_{2r-1} \end{vmatrix} = 0.$$
which are the orthogonal polynomials for the weight function $w(x) = \frac{1}{2}(x^{1/4} - x^{1/2})$ for the range $0 \leq x \leq 1$. The first two are

\[
\begin{cases}
3x - 1 = 0 \\
17017x^2 - 13650x + 1745 = 0.
\end{cases}
\]

The main correction term is this time

\[
C = \left(C_{r+1} - \sum_{p=1}^{r} 4A_{p} b_{p+1} \right) \frac{2^{r+2}h^{r+4}}{(8r + 4)!} f_{0}.
\]

In each case the coefficients A_{p} may be computed by standard methods.

8. Formulas for $r = 1$. These have 4 and 5 points respectively

\[
A_{0} = \frac{4}{5}, \quad A_{1} = \frac{1}{20}, \quad b = 3^{-1/4}, \quad C = \frac{2816}{12285} \frac{h^{12}D^{12} f_{0}}{12!}.
\]

Written out in full:

\[
J = \frac{1}{4} I = \frac{1}{4} \left(f(15^{-1/4}, 15^{-1/4}) + f(-15^{-1/4}, 15^{-1/4}) + f(15^{-1/4}, -15^{-1/4}) + f(-15^{-1/4}, -15^{-1/4}) \right)
\]

\[
J = \frac{1}{4} I = \frac{1}{4} \left(f(0, 0) + \frac{1}{2} f(3^{-1/4}, 3^{-1/4}) + f(-3^{-1/4}, 3^{-1/4}) + f(3^{-1/4}, -3^{-1/4}) + f(-3^{-1/4}, -3^{-1/4}) \right).
\]

As a numerical test use

\[
J = \frac{1}{4} I = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} \cos x \cosh y \, dx \, dy = \sin 1 \sinh 1 = 0.988897705762865.
\]

Formula (8.3) gives 0.98889 06525 with $E = -0.0000070533$ and $C = +0.0000070547$

and formula (8.4) gives 0.98889 77062 41358 with $E = +0.09478493$ and $C = -0.09478543$.

9. Formulas for $r = 2$. These have 8 and 9 points respectively

\[
b_{1} = 0.40316260305934689754, \quad A_{0} = 0.22912306542816997222
\]

\[
b_{2} = 0.84439753192347874713, \quad A_{0} = 0.02087693457183002778
\]

with main correction term $\frac{54592}{57014685} \times \frac{256}{16!} h^{16}D^{16} f_{0}$

\[
b_{0} = 0
\]

\[
b_{1} = 0.63205020781879699524, \quad A_{0} = 0.00993126060066316340
\]

\[
b_{2} = 0.89531637912410697730, \quad A_{0} = 0.00668421854610538162
\]

\[
b_{3} = 0.84439753192347874713, \quad A_{0} = 0.02087693457183002778
\]

\[
b_{4} = 0.40316260305934689754, \quad A_{0} = 0.22912306542816997222
\]

\[
b_{5} = 0
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
with main correction term \(\frac{16832}{78975897} \times \frac{1024}{20!} h^{20} \delta^{20} f_6 \).

For

\[
J = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} \cos x \cosh y \, dx \, dy
\]

formula (9.1) gives 0.98889 77057 62853 38396 with
\[
E = -0.0^{13} 1171243 \quad \text{and} \quad C = +0.0^{13} 1171555
\]
while formula (9.2) gives 0.98889 77057 62865 09647 with
\[
E = +0.0^{19} 90 \quad \text{and} \quad C = -0.0^{19} 90.
\]

With formula (9.2) we find approximately 0.82447 37090 77903 16756 for

\[
\frac{1}{16} \int_{-2}^{2} \int_{-2}^{2} \cos x \cosh y \, dx \, dy = \sin 2 \sinh 2 = 0.82447 37090 77809 15433
\]

with \(E = +0.0^{19} 9401323 \) and \(C = -0.0^{19} 9406250 \).

These formulae clearly have high precision, even with considerable values of \(h \).

10. Quadrature over a Cube; Specially Chosen Points. The search for such formulas is more difficult in 3 or more dimensions. It seems that one or more extra available constants are needed in order to obtain real points. We shall not pursue this, but give one simple formula for three dimensions.

We find nothing convenient by use of points \(\alpha(a) \), with or without 0; likewise 0 with \(\beta(b) \) fails to give real points. We can, however, use 12 points \(\beta(b) \) alone. We have then to satisfy

\[
\begin{align*}
2n(n - 1) A_\beta &= 1 \\
8b^4(4 - n) A_\beta &= A_b^1,
\end{align*}
\]

where \(n = 3 \).

This yields \(b = (2/5)^{1/4} = 0.79527 \ 07287 \ 67051 \ \ \ A_\beta = 1/12 \)

with main correction term

\[
C = \left(156 b^6 A_\beta + \frac{16}{21} \right) h^6 \delta f_6 = 0.005626 h^6 \delta f_6.
\]

With the example of §6, with integrand \(\frac{1}{2} x \cos y \cosh \frac{1}{2} z \) (10.1) gives \(J = 0.97519 \) with \(E = -0.00489 \) and \(C = +0.00494 \).

The only formula found that allows for the term \(\delta f_6 \) and has an error of order \(h^6 \) is (6.33), which needs 19 points. It is evident that further search is needed.

The University Mathematical Laboratory
Cambridge, England; and
The Digital Computer Laboratory
University of Illinois, Urbana, Illinois