where

\[
\begin{align*}
M_2 &= -\mu'\sqrt{(\sigma')^2 + 1} \\
M_3 &= -\mu'\sqrt{(\sigma')^2 + 1} \\
\frac{1}{\tau} &= \sqrt{(\sigma')^2 + 1} \sqrt{(\sigma')^2 + 1}.
\end{align*}
\]

Equation (10) gives the volume under the bivariate normal probability surface with correlation coefficient \(r \). These volumes are tabulated in [1].

AVCO Research and Advanced Development
Wilmington, Massachusetts

The Congruence \(2^{p-1} \equiv 1 \pmod{p^2} \) for \(p < 100,000 \)

By Sidney Kravitz

Fröberg has previously announced [1] the computation of the Fermat remainders corresponding to all odd primes less than 50,000. His results show that \(p = 1093 \) and \(p = 3511 \) are the only solutions of the congruence \(2^{p-1} \equiv 1 \pmod{p^2} \) in that range.

The residues of \(2^{p-1} \pmod{p^2} \) have been computed for \(50,000 < p < 100,000 \) on an IBM 650 system at Picatinny Arsenal. No residue congruent to 1 was found corresponding to a prime in this range.

A copy of the table of residues has been deposited in the Unpublished Mathematical Tables file.

Picatinny Arsenal
Dover, New Jersey

Editorial Note: Reference should also be made to:

Received April 14, 1960.