Improved formulas for complete and partial summation of certain series.

Authors:
Herbert E. Salzer and Genevieve M. Kimbro

Journal:
Math. Comp. **15** (1961), 23-39

MSC:
Primary 65.00

DOI:
https://doi.org/10.1090/S0025-5718-1961-0121972-2

MathSciNet review:
0121972

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In two previous articles one of the authors gave formulas, with numerous examples, for summing a series either to infinity (complete) or up to a certain number *n* of terms (partial) by considering the sum of the first *j* terms , or some suitable modification , closely related to , as a polynomial in 1/*j*. Either or was found by *m*-point Lagrangian extrapolation from , , , to 1/*j* = 0 or 1/*j* = 1/*n* respectively. This present paper furnishes more accurate *m*-point formulas for sums (or sequences) which behave as even functions of 1/*j*. Tables of Lagrangian extrapolation coefficients in the variable are given for: complete summation, *m* = 2(1)7, = 10, exactly and 20D, *m* = 11, = 20, 30D; partial summation, *m* = 7, = 10, *n* = 11(1)25(5)100, 200, 500, 1000, exactly. Applications are made to calculating or the semi-perimeters of many-sided regular polygons, Euler's constant,

*v*, etc. A useful device in many cases involving sums of odd functions, is to replace by a trapezoidal-type which is seen, from the Euler-Maclaurin formula, to be formally a series in . In almost every example, comparison with the earlier (1/

*j*)-extrapolation showed these present formulas, for 7 points, to improve results by anywhere from around 4 to 9 places.

**[1]**H. E. Salzer, ``A simple method for summing certain slowly convergent series,''*J. Math. Phys.*, v. 33, 1955, p. 356-359. MR**0068315 (16:863d)****[2]**H. E. Salzer, ``Formulas for the partial summation of series,''*MTAC*, v. 10, 1956, p. 149-156. MR**0081528 (18:416a)****[3]**L. F. Richardson, ``The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,''*Philos. Trans. Roy. Soc. London, Ser. A*, v. 210, 1910, p. 307-357.**[4]**L. F. Richardson & J. A. Gaunt, ``The deferred approach to the limit,''*Philos. Trans. Roy. Soc. London, Ser. A*, v. 226, 1927, p. 299-361.**[5]**G. Blanch, ``On the numerical solution of parabolic partial differential equations,''*J. Res. Nat. Bur. Standards*, v. 50, 1953, p. 343-356. MR**0059078 (15:474b)****[6]**H. C. Bolton & H. I. Scoins, ``Eigenvalues of differential equations by finite-difference methods,''*Proc. Cambridge Philos. Soc.*, v. 52, pt. 2, 1956, p. 215-229. MR**0079344 (18:72d)****[7]**M. G. Salvadori, ``Extrapolation formulas in linear difference operators,''*Proc. First U. S. Nat. Congress of Applied Mech.*, Edwards Bros., 1952, p. 15-18. MR**0060911 (15:747a)****[8]**Herrmann, ``Bestimmung der trigonometrischen Functionen aus den Winkeln und der Winkel aus den Functionen, bis zu einer beliebigen Grenze der Genauigkeit,''*Kaiserliche Akademie der Wissenschaften*, Wien,*Mathematisch-naturwissenschaftliche Classe, Sitzungsberichte*, 1, pt. IV, 1848, p. 176-177. Reprinted in*Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree, Nat. Bur. Standards. Appl. Math. Ser.*No. 5, 1949, p. 92-93. MR**0030289 (10:740d)****[9]**E. Whittaker & G. Robinson,*The Calculus of Observations*, 4th edition, Blackie and Son, London, 1954, p. 135.**[10]**H. T. Davis,*Tables of the Higher Mathematical Functions*, v. II, Principia Press, Bloomington, Indiana, 1935, p. 282, 284-285, 304. Davis cites the earlier work of J. W. L. Glaisher in relation to Catalan's constant in*Mess. of Math.*, v. 6, 1876, p. 71-76,*Proc. London Math. Soc.*, v. 8, 1877, p. 200-201,*Mess. of Math.*, v. 42, 1913, p. 35-58.**[11]**G. N. Watson,*Theory of Bessel Functions*, 2nd edition, Cambridge University Press, 1952, p. 506.**[12]**NBS,*Tables of Spherical Bessel Functions*, v. II, New York, Columbia University Press, 1947, p. 318.**[13]**W. G. Bickley & J. C. P. Miller, ``Notes on the evaluation of zeros and turning values of Bessel functions, II, The McMahon Series,''*Phil. Mag.*, s. 7, v. 36, 1945, p. 125. MR**0012903 (7:82d)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.00

Retrieve articles in all journals with MSC: 65.00

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1961-0121972-2

Article copyright:
© Copyright 1961
American Mathematical Society