The epsilon algorithm and operational formulas of numerical analysis

Author:
P. Wynn

Journal:
Math. Comp. **15** (1961), 151-158

MSC:
Primary 65.25

MathSciNet review:
0158513

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**H. Padé, ``Sur la Representation Approchée d'une Fonction par des Fractions Rationelles,''*Ann. Ec. Norm.*Sup. 3, 1892, p. 9.**[2]**Oskar Perron,*Die Lehre von den Kettenbrüchen*, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR**0037384****[3]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596****[4]**Zdeněk Kopal,*Operational methods in numerical analysis based on rational approximations*, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, The University of Wisconsin Press, Madison, 1959, pp. 25–43. MR**0102165****[5]**Daniel Shanks,*Non-linear transformations of divergent and slowly convergent sequences*, J. Math. and Phys.**34**(1955), 1–42. MR**0068901****[6]**P. Wynn,*The rational approximation of functions which are formally defined by a power series expansion*, Math. Comput.**14**(1960), 147–186. MR**0116457**, 10.1090/S0025-5718-1960-0116457-2**[7]**P. Wynn,*On a device for computing the 𝑒_{𝑚}(𝑆_{𝑛}) tranformation*, Math. Tables Aids Comput.**10**(1956), 91–96. MR**0084056**, 10.1090/S0025-5718-1956-0084056-6**[8]**P. Wynn, ``The numerical efficiency of certain continued fraction expansions,'' to appear.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1961-0158513-X

Article copyright:
© Copyright 1961
American Mathematical Society