The epsilon algorithm and operational formulas of numerical analysis

Author:
P. Wynn

Journal:
Math. Comp. **15** (1961), 151-158

MSC:
Primary 65.25

DOI:
https://doi.org/10.1090/S0025-5718-1961-0158513-X

MathSciNet review:
0158513

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**H. Padé, ``Sur la Representation Approchée d'une Fonction par des Fractions Rationelles,''*Ann. Ec. Norm.*Sup. 3, 1892, p. 9.**[2]**O. Perron,*Die Lehre von den Kettenbrüchen*, Chelsea, New York, 1950, p. 420. MR**0037384 (12:254b)****[3]**H. Wall,*Analytic Theory of Continued Fractions*, van Nostrand, New York, 1948, p. 377. MR**0025596 (10:32d)****[4]**Z. Kopal, ``Operational methods in numerical analysis based on rational approximations,''*On Numerical Approximation*, University of Wisconsin Press, Madison, 1959, p. 25. MR**0102165 (21:959)****[5]**D. Shanks, ``Non-linear transformation of divergent and slowly convergent sequences,''*Jn. Math. and Phys.*, v. 34, 1955, p. 21. MR**0068901 (16:961e)****[6]**P. Wynn, ``The rational approximation of functions which are formally defined by a power series expansion,''*Math. Comp.*, v. 14, 1960, p. 147. MR**0116457 (22:7244)****[7]**P. Wynn, ``On a device for computing the transformation,''*MTAC*, v. 10,1956, p. 91. MR**0084056 (18:801e)****[8]**P. Wynn, ``The numerical efficiency of certain continued fraction expansions,'' to appear.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1961-0158513-X

Article copyright:
© Copyright 1961
American Mathematical Society