Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The approximate solution of an integral equation using high-order Gaussian quadrature formulas


Authors: Stephen M. Robinson and A. H. Stroud
Journal: Math. Comp. 15 (1961), 286-288
MSC: Primary 45.00
DOI: https://doi.org/10.1090/S0025-5718-1961-0124702-3
MathSciNet review: 0124702
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. Davis, & P. Rabinowitz, ``Abscissas and weights for Gaussian quadratures of high order,'' J. Res. Nat. Bur. Standards, v. 56, 1956, p. 35-37. MR 0076463 (17:902g)
  • [2] P. Davis, & P. Rabinowitz, ``Additional abscissas and weights for Gaussian quadrature of high order: values for n = 64, 80, and 96,'' J. Res. Nat. Bur. Standards, v. 60, 1958, p. 613-614. MR 0076463 (17:902g)
  • [3] H. J. Gawlik, ``Zeros of Legendre polynomials of orders 2-64 and weight coefficients of Gauss quadrature formulae,'' Armament Research and Development Establishment Memorandum (B) 77/58, Fort Halstead, Kent, 25 p., Dec. 1958.
  • [4] L. V. Kantorovich, & V. I. Krylov, Approximate Methods of Higher Analysis, Interscience & Noordhoff, New York and Groningen, 1958. MR 0106537 (21:5268)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 45.00

Retrieve articles in all journals with MSC: 45.00


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1961-0124702-3
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society