Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Bi-variate, rectangular, optimum-interval interpolation


Author: Ferdinand Freudenstein
Journal: Math. Comp. 15 (1961), 288-291
MSC: Primary 65.20
DOI: https://doi.org/10.1090/S0025-5718-1961-0129532-4
MathSciNet review: 0129532
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. F. Steffensen, Interpolation, The William and Wilkins Co., Baltimore, Md. 1927 (p. 206, eq. 13). Reprint available from Chelsea Publishing Co. Formula goes back to S. Narumi, The Tohoku Math. J. v. 18, 1920, p. 313. MR 0036799 (12:164d)
  • [2] N. I. Achieser, translated by Charles J. Hyman, Theory of Approximation, F. Ungar Publishing Co., New York, 1956; in particular p. 55-60 on Chebyshev theory. MR 0095369 (20:1872)
  • [3] O. Biermann, Vorlesungen Ueber Mathematische Naeherungsmethoden, F. Vieweg und Sohn Verlag, Braunschweig, Germany, 1905; in particular p. 138-146 on interpolation involving two variables.
  • [4] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book Co., New York, 1956; in particular p. 279-282, 386-391 on Chebyshev polynomials. MR 0075670 (17:788d)
  • [5] K. S. Kunz, Numerical Analysis, McGraw-Hill Book Co., New York, 1957; in particular, Chapter 11, p. 248-274 on interpolation in tables of two or more variables, and equation (11.60) on page 269. MR 0088045 (19:460c)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.20

Retrieve articles in all journals with MSC: 65.20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1961-0129532-4
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society