Note on "Approximation of Curves by Line Segments"

By N. Ream

The problem of obtaining a best fit of broken line segments to a curve over a given range has recently been investigated by Stone [1] who has prepared a general computer program to solve the least-squares equations.

The problem arose previously in designing diode function-generators for analog computers [2], [3], [4]. If \(f(x) \) is the given curve and \((u_0, u_N) \) is the range to be fitted by \(N \) segments, and if \(f(x) \) may be approximated by a parabola in each segment, then it may be shown [4] that the unweighted least-squares fit yields the following equation for the breakpoints \(u_1, \ldots, u_{N-1} : \)

\[
\int_{u_0}^{u_j} f''(x) \, dx = \frac{j}{N} \int_{u_0}^{u_N} f''(x) \, dx,
\]

and that the ordinate \(v_j \) of each breakpoint is given by

\[
v_j - f(u_j) = -\frac{1}{12N^2} \left[f''(u_j) \right]^{0.4} \left[\int_{u_0}^{u_N} f''(x) \, dx \right]^2.
\]

For \(f(x) = e^{-cx} \) fitted over \((0, 3)\), equations (1) and (2) become

\[
1 - e^{-0.4cu_j} = \frac{j}{N} (1 - e^{-1.2c}),
\]

\[
v_j - e^{-cu_j} = -\frac{25}{48N^2} e^{-0.2cu_j} (1 - e^{-1.2c})^2.
\]

Table 1 gives values of \(u_1 \) and maximum error \(E_{\text{max}} \) computed from (3) and (4) for \(N = 2 \); Stone’s values are shown in parentheses. \(E_{\text{max}} \) occurs at \(x = 0 \). The table also gives values of the r.m.s. error \(R \) which the least-squares analysis aims to minimize; \(R \) is computed from the formula

\[
(u_N - u_0) R^2 = \left(\frac{1}{720N^4} \right) \left[\int_{u_0}^{u_N} f''(x) \, dx \right]^2,
\]

which for the chosen function becomes

\[
R = (6c)^{-0.5} E_{\text{max}}.
\]

The derivation of equations (1), (2), and (5) involves expanding \(f(x) \) in a Taylor series about the center of each segment and retaining the first three terms. Hence (i) the formulas are exact for a parabola—it follows immediately that the best fit to a parabola has equally-spaced breakpoints; (ii) the method fails where \(f''(x) = 0 \).

It may be mentioned that if the “best fit” is required to minimize the maximum

Received March 24, 1961.
error, the breakpoints are given by equations (1) with the index 0.4 replaced by 0.5 and \(f''(x) \) replaced by its absolute value. The maximum error \(E \) is then given by

\[
E = \left[\frac{1}{4N} \int_{u_0}^{u_N} |f''(x)|^{0.5} \, dx \right]^2.
\]

For the function under discussion (7) becomes

\[
E = \frac{1}{4N^2} (1 - e^{-1.6c})^2,
\]

and the error \(\delta E \) in \(E \) due to the approximations used in deriving (8) may be shown to be given by

\[
\delta E \cong \frac{1}{4} E e^{1.6c}.
\]

Values of \(E \) and \(\delta E \) are included in the table.

Battersea College of Technology
London, S. W. 11
England