Calculation of to 100,000 decimals
Authors:
Daniel Shanks and John W. Wrench
Journal:
Math. Comp. 16 (1962), 7699
MSC:
Primary 65.99
MathSciNet review:
0136051
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
George
W. Reitwiesner, An ENIAC determination of 𝜋
and 𝑒 to more than 2000 decimal places, Math. Tables and Other Aids to Computation 4 (1950), 11–15. MR 0037597
(12,286i), http://dx.doi.org/10.1090/S00255718195000375976
 [2]
S.
C. Nicholson and J.
Jeenel, Some comments on a NORC computation of
𝜋, Math. Tables Aids Comput. 9 (1955), 162–164.
MR
0075672 (17,789b), http://dx.doi.org/10.1090/S00255718195500756725
 [3]
G. E. Felton, ``Electronic computers and mathematicians,'' Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 818, 1957, p. 1217, footnote p. 1253. This published result is correct to only 7480D, as was established by Felton in a second calculation, using formula (5), completed in 1958 but apparently unpublished. For a detailed account of calculations of see J. W. Wrench, Jr., ``The evolution of extended decimal approximations to ,'' The Mathematics Teacher, v. 53, 1960, p. 644650.
 [4]
François
Genuys, Dix mille décimales de 𝜋, Chiffres
1 (1958), 17–22 (French). MR 0094928
(20 #1436)
 [5]
This unpublished value of to 16167D was computed on an IBM 704 system at the Commissariat à l'Energie Atomique in Paris, by means of the program of Genuys.
 [6]
C. Störmer, ``Sur l'application de la théorie des nombres entiers complexes à la solution en nombres rationnels, , , k de l'équation ,'' Archiv for Mathematik og Naturvidenskab, v. 19, 1896, p. 69.
 [7]
C. F. Gauss, Werke, Göttingen, 1863; 2nd ed., 1876, v. 2, p. 499502.
 [8]
S.
Ramanujan, Modular equations and approximations to 𝜋
[Quart. J. Math. 45 (1914), 350–372], Collected papers of
Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000,
pp. 23–39. MR
2280849
 [1]
 G. Reitwiesner, ``An ENIAC determination of and e to more than 2000 decimal places,'' MTAC, v. 4, 1950, p. 1115. MR 0037597 (12:286i)
 [2]
 S. C. Nicholson & J. Jeenel, ``Some comments on a NORC computation of ,'' MTAC, v. 9, 1955, p. 162164. MR 0075672 (17:789b)
 [3]
 G. E. Felton, ``Electronic computers and mathematicians,'' Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 818, 1957, p. 1217, footnote p. 1253. This published result is correct to only 7480D, as was established by Felton in a second calculation, using formula (5), completed in 1958 but apparently unpublished. For a detailed account of calculations of see J. W. Wrench, Jr., ``The evolution of extended decimal approximations to ,'' The Mathematics Teacher, v. 53, 1960, p. 644650.
 [4]
 F. Genuys, ``Dix milles decimales de ,'' Chiffres, v. 1, 1958, p. 1722. MR 0094928 (20:1436)
 [5]
 This unpublished value of to 16167D was computed on an IBM 704 system at the Commissariat à l'Energie Atomique in Paris, by means of the program of Genuys.
 [6]
 C. Störmer, ``Sur l'application de la théorie des nombres entiers complexes à la solution en nombres rationnels, , , k de l'équation ,'' Archiv for Mathematik og Naturvidenskab, v. 19, 1896, p. 69.
 [7]
 C. F. Gauss, Werke, Göttingen, 1863; 2nd ed., 1876, v. 2, p. 499502.
 [8]
 S. Ramanujan, ``Modular equations and approximations to ,'' Quart. J. Pure Appl. Math., v. 45, 1914, p. 350372; Collected papers of Srinivasa Ramanujan, Cambridge, 1927, p. 2339. MR 2280849
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.99
Retrieve articles in all journals
with MSC:
65.99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196201360519
PII:
S 00255718(1962)01360519
Article copyright:
© Copyright 1962 American Mathematical Society
