New Mersenne Primes

By Alexander Hurwitz

If p is prime, $M_p = 2^p - 1$ is called a Mersenne number. The primes M_{4253} and M_{4423} were discovered by coding the Lucas-Lehmer test for the IBM 7090. These two new primes are the largest prime numbers known; for other large primes see Robinson [4]. The computing was done at the UCLA Computing Facility. This test is described by the following theorem (see Lehmer [1, p. 443-4]).

THEOREM. If $S_1 = 4$ and $S_{n+1} = S_n^2 - 2$ then M_p is prime if and only if $S_{p-1} \equiv 0 \pmod{M_p}$.

The test takes about 50 minutes of machine time for p=4423. These results bring the number of known Mersenne primes to 20. The values of p for these twenty primes are listed in Table 1.

If M_p is prime it is of interest to know the sign of the least absolute penultimate residue, that is, whether $S_{p-2} \equiv +2^r \pmod{M_p}$ or $S_{p-2} \equiv -2^r \pmod{M_p}$ where 2r = p + 1. The Lucas-Lehmer test can also be used with $S_1 = 10$. The various penultimate residues of the known Mersenne primes were computed and the results appear in Table 1 (see Robinson [3]).

In addition to testing the above Mersenne primes each Mersenne number with p < 5000 was tested unless a factor of M_p was known. The residues of S_{p-1} (mod M_p) are available for checking purposes. The results for 3300 $are summarized in Table 2. The computer program also found (see [3, p. 844]) that <math>M_{8191}$ is not prime.

The residue S_{p-1} (mod M_p) for p > 3300 is output from the computer in a modified octal notation. That is, the residue is stored in the computer in 35 bit binary words and the output is a word by word conversion of the 35 bit words into octal (base 8) numbers. Thus the leading digit of each is quaternary (base 4). For p < 3300 the residue was printed in hexadecimal notation (see Robinson [3] and Riesel [2]).

TABLE I					
Þ	$S_1=4$	$S_1 = 10$	Þ	$S_1 = 4$	$S_1 = 10$
2 3 5 7 13 17 19 31 61 89	+ + - + - + - + +	- - + + + + +	107 127 521 607 1279 2203 2281 3217 4253 4423	- + - - + - + - +	+ + + - - + + +
89	_	+	4420		

TABLE 1

Received November 3, 1961. The preparation of this paper was sponsored by the U. S. Office of Naval Research.

TABLE 2

		TABLE 2
p	R	p R
3301	72013	4241 11012
3307	62061	4253 00000
3313	10050	4259 46007
3331	51270	4261 55632
3343	76415	4283 74774
3371	57040	4339 41356
3373	36120	4349 74465
3389	64705	4357 74271
3413	50261	4363 61114
		4397 40174
3461	03241	4597 40174
3463	57665	4409 51070
3467	23046	4421 25131
3469	21765	$4423 \qquad 00000$
3547	75574	4481 70216
3559	45350	4493 36053
3583	42507	4519 01571
3607	45062	4523 22235
		$\frac{4523}{4567}$ $\frac{22233}{74267}$
3617	35431	
3631	14530	4583 46556
3637	67413	4591 47243
3643	04606	4621 74601
3671	04031	$4643 \qquad 51444$
3673	01626	4651 00707
3691	54715	4663 52442
3697	53743	4673 40333
3709	06427	4679 14305
3739	22413	4703 54013
3769	00747	4721 04420
3821	52075	4729 40137
3833	45453	4733 12774
9099	40400	4755 12774
3847	57652	4783 77350
3877	46507	$4789 \qquad 02364$
3881	34503	$4799 \qquad 04305$
3889	30737	4817 70020
3919	16520	4831 33213
3943	33442	4877 75412
4007	17770	4889 24410
4027	60265	4909 61113
4049	31260	4937 26525
4049 4051	63236	4957 20525 4951 22271
4001	U323U	4901 22271
4091	55650	$4973 \qquad 03354$
4093	26670	4987 72275
4111	20437	- · · · -
4133	66046	$8191 \qquad 03624$
4157	43640	0201 00001
4159	62544	
4177	16076	
4201	53211	
4219	51756	
4231	51457	

The five least significant octal digits of the residue appear in Table 2 for each p > 3300 tested. If p (3300 $) is omitted from Table 2 a factor of <math>2^p - 1$ is known. Some of these factors are not yet published but were communicated to the author by John Brillhart.

My thanks to the Computing Facility for their help in this work, especially J. L. Selfridge and F. H. Hollander.

University of California at Los Angeles Los Angeles, California

- 1. D. H. LEHMER, "An extended theory of Lucas' functions," Ann. of Math. v. 31, 1930, p. 419-448.
 - 2. H. RIESEL, "Mersenne numbers," MTAC, v. 12, 1958, p. 207-213.
 3. R. M. ROBINSON, "Mersenne and Fermat numbers," Proc. Amer. Math. Soc. v. 5, 1954,
- p. 842-846. 4. R. M. Robinson, "A report on primes of the form $k \cdot 2^n + 1$ and on factors of Fermat numbers," *Proc. Amer. Math. Soc.* v. 9, 1958, p. 673-681.