Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Minimum periods, modulo $ p$, of first-order Bell exponential integers.


Authors: Jack Levine and R. E. Dalton
Journal: Math. Comp. 16 (1962), 416-423
MSC: Primary 10.07
DOI: https://doi.org/10.1090/S0025-5718-1962-0148604-2
MathSciNet review: 0148604
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. T. Bell, ``Exponential numbers,'' Amer. Math. Monthly, v. 41, 1934, p. 411-419. MR 1523147
  • [2] E. T. Bell, ``The iterated exponential integers,'' Ann. of Math., v. 39, 1938, p. 539-557. MR 1503423
  • [3] H. W. Becker & D. H. Browne, ``Problem E461 and solution,'' Amer. Math. Monthly, v. 48, 1941, p. 701-703. MR 1525304
  • [4] Jack Levine, ``A binomial identity related to rhyming sequences,'' Math. Mag., v. 32, 1958, p. 71-74. MR 0099303 (20:5744)
  • [5] W. A. Whitworth, Choice and Chance, Hafner Publ. Co., New York, 1951.
  • [6] C. Jordan, Calculus of Finite Differences, Second Edition, Chelsea Publ. Co., New York, 1950. MR 0183987 (32:1463)
  • [7] G. T. Williams, ``Numbers generated by the function $ {e^{{e^{x - 1}}}}$,'' Amer. Math. Monthly, v. 52, 1945, p. 323-327. MR 0012612 (7:47e)
  • [8] L. F. Epstein, ``A function related to the series for $ {e^{{e^x}}}$,'' J. Math. Phys., v. 18, 1939, p. 153-173. MR 0000058 (1:10d)
  • [9] N. S. Mendelsohn & J. Riordan, ``Problem 4340 and solution,'' Amer. Math. Monthly, v. 58, 1951, p. 46-48. MR 1527750
  • [10] U. Broggi, ``Su di qualche applicazione dei numeri di Stirling,'' 1st. Lombardo Rend., II. s., v. 66, 1933, p. 196-202.
  • [11] H. W. Becker & J. Riordan, ``The arithmetic of Bell and Stirling numbers,'' Amer. J. Math., v. 70, 1948, p. 385-394. MR 0024915 (9:568d)
  • [12] M. d'Ocagne, ``Sur une classe de nombres remarquables,'' Amer. J. Math., v. 9, 1887, p. 353-380. (See also 1, 2, 11). MR 1505453
  • [13] J. Touchard, ``Propriétés arithmétiques de certains nombres recurrents,'' Ann. Soc. Sci. Bruxelles, v. 53A, 1933, p. 21-31.
  • [14] M. Hall, ``Arithmetic properties of a partition function,'' (Abstract 200), Bull. Amer. Math. Soc., v. 40, 1934.
  • [15] A. Cunningham, ``Factorization of $ N = {Y^Y} \pm 1$ and $ {X^{XY}} \pm {Y^{XY}}$,'' Messenger of Math., v. 45, 1915, p. 49-75.
  • [16] H. Gupta, Tables of Distribution, East Punjab University, Research Bulletin, v. 2, 1950, p. 44.
  • [17] G. Fontene, ``Problem 2137 and solution,'' Nouvelle Annales de Math., v. 13, 1913, p. 383-384.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.07

Retrieve articles in all journals with MSC: 10.07


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1962-0148604-2
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society