Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Certain properties of pyramidal and figurate numbers


Author: M. Wunderlich
Journal: Math. Comp. 16 (1962), 482-486
MSC: Primary 10.05
DOI: https://doi.org/10.1090/S0025-5718-1962-0148608-X
MathSciNet review: 0148608
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. C. P. Miller, & M. F. C. Woollett, ``Solutions of the Diophantine equation $ {x^3} + {y^3} + {z^3} = k$,'' London Math. Soc., v. 30, 1955, p. 101-110. MR 0067916 (16:797e)
  • [2] L. Dickson, History of the Theory of Numbers, v. 2, Chap. 1. (Reprint: Stechert, New York, 1934).
  • [3] S. Chowla and others, ``The Diophantine equation $ {x^3} + {y^3} + {z^3} = x + y + z$,'' submitted to Norske Vid. Selsk. Forh. Trondheim.
  • [4] S. Segal, ``A note on pyramidal numbers,'' American Math. Monthly, (in press).
  • [5] Swiatomir Zabek, ``Sur la periodicite modulo m des suites de nombres $ (_{k}^{n})$,'' Ann. Univ. Mariae Curi-Sklodowska, Sect. A, 10 (1956), p. 37-47. MR 0095147 (20:1653)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.05

Retrieve articles in all journals with MSC: 10.05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1962-0148608-X
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society