Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Tabulation of the functions $ \partial I\sb{\nu }\,(z)/\partial \nu ,\nu =\pm {{1}\over{3}}$


Authors: Thomas Erber and Alan Gordon
Journal: Math. Comp. 17 (1963), 162-169
MSC: Primary 65.05; Secondary 33.25
DOI: https://doi.org/10.1090/S0025-5718-1963-0159043-3
MathSciNet review: 0159043
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge, 1952, p. 444.
  • [2] F. Oberhettinger, On the derivative of Bessel functions with respect to the order, J. Math. and Phys. 37 (1958), 75–78. MR 0092871, https://doi.org/10.1002/sapm195837175
  • [3] Kiuck Lee and Lee G. Radosevich, Evaluation of ∂𝐽_{𝜈}(𝑧)/∂𝜈, J. Math. and Phys. 39 (1960), 293–299. MR 0119394
  • [4] National Bureau of Standards, Tables of Bessel Functions of Fractional Order, v. 2, Columbia University Press, New York, 1949.
  • [5] F. B. Hildebrand, Introduction to numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR 0075670
  • [6] T. Erber, ``Majorant for a modified Bessel function,'' Notices, Amer. Math. Soc., v. 9, 1962, p. 404.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.05, 33.25

Retrieve articles in all journals with MSC: 65.05, 33.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1963-0159043-3
Article copyright: © Copyright 1963 American Mathematical Society