Experiments on the lattice problem of Gauss
Authors:
H. B. Keller and J. R. Swenson
Journal:
Math. Comp. 17 (1963), 223230
MSC:
Primary 10.45; Secondary 10.25
MathSciNet review:
0166168
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Lookeng
Hua, The latticepoints in a circle, Quart. J. Math., Oxford
Ser. 13 (1942), 18–29. MR 0007768
(4,190e)
 [2]
G. H. Hardy, ``On the expression of a number as the sum of two squares,'' Quart. J. Math. v. 46, 1915, p. 263283, and ``On Dirichlet's divisor problem,'' Proc. London Math. Soc., Ser. 2, v. 15, 1916, p. 125.
 [3]
W.
Fraser and C.
C. Gotlieb, A calculation of the number of lattice
points in the circle and sphere, Math.
Comp. 16 (1962),
282–290. MR 0155788
(27 #5722), http://dx.doi.org/10.1090/S00255718196201557889
 [4]
H. L. Mitchell, III, Numerical Experiments on the Number of Lattice Points in the Circle, Technical Report No. 17, Appl. Math. and Stat. Labs., Stanford University, Stanford, California.
 [1]
 L. K. Hua, ``The latticepoints in a circle,'' Quart. J. Math., Oxford Ser., v. 13, 1942, p. 1829. MR 0007768 (4:190e)
 [2]
 G. H. Hardy, ``On the expression of a number as the sum of two squares,'' Quart. J. Math. v. 46, 1915, p. 263283, and ``On Dirichlet's divisor problem,'' Proc. London Math. Soc., Ser. 2, v. 15, 1916, p. 125.
 [3]
 W. Fraser & C. C. Gotlieb, ``A calculation of the number of lattice points in the circle and sphere,'' Math. Comp., v. 16, 1962, p. 282290. MR 0155788 (27:5722)
 [4]
 H. L. Mitchell, III, Numerical Experiments on the Number of Lattice Points in the Circle, Technical Report No. 17, Appl. Math. and Stat. Labs., Stanford University, Stanford, California.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10.45,
10.25
Retrieve articles in all journals
with MSC:
10.45,
10.25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196301661685
PII:
S 00255718(1963)01661685
Article copyright:
© Copyright 1963
American Mathematical Society
