Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 17 (1963), 302-332
DOI: https://doi.org/10.1090/S0025-5718-63-99179-8
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] CRC Standard Mathematical Tables, Tenth & Eleventh Editions, RMT 61, MTAC, v. 12, 1958, p. 146.
  • [1] National Bureau of Standards, Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree, Applied Mathematics Series, No. 5, U. S. Government Printing Office, Washington, D.C., 1949. MR 0030289 (10:740d)
  • [2] J. Peters, Seven-Place Values of Trigonometric Functions for Each Thousandth of a Degree, Van Nostrand, New York, 1942. MR 0007111 (4:89c)
  • [3] A. Fletcher, J. C. P. Miller, L. Rosenhead, & L. J. Comrie, An Index of Mathematical Tables, Second Edition, Addison-Wesley, Reading, Massachusetts, 1962. (See Vol. I, Art. 7.2, p. 173.)
  • [1] Francis L. Miksa, Table of quadratic partitions $ {x^2} + {y^2} = N$, RMT 83, MTAC, v. 9, 1955, p. 198.
  • [2] John Leech, ``Some solutions of Diophantine equations,'' Proc. Cambridge Philos. Soc., v. 53, 1957, p. 778-780. MR 0090602 (19:837f)
  • [1] David C. Mapes, ``Fast method for computing the number of primes less than a given limit, ``Math. Comp., v. 17, 1963, p. 179-185. MR 0158508 (28:1731)
  • [2] J. Barkley Rosser and Lowell Schoenfeld, ``Approximate formulas for some functions of prime numbers,'' Illinois J. Math., v. 6, 1962, p. 64-94. MR 0137689 (25:1139)
  • [3] Kenneth I. Appel and J. Barkley Rosser, Table for Functions of Primes, IDA-CRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp., v. 16, 1962, p. 500-501.
  • [4] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tract No. 30, Cambridge University Press, 1932. MR 1074573 (91f:11064)
  • [1] Kenneth I. Appeland J. Barkley Rosser, Table for Estimating Functions of Primes, IDA-CRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp. v. 16, 1962, p. 500-501.
  • [2] A. Walther, ``Anschauliches zur Riemannschen Zetafunktion,'' Acta. Math., v. 48, 1926, p. 393-400. MR 1555234
  • [3] C. F. Gauss, Recherches Arithmétiques, Blanchard, Paris, 1953, p. 370.
  • [4] Daniel Shanks, ``The second-order term in the asymptotic expansion of B(x),'' Notices, Amer. Math. Soc., v. 10, 1963, p. 261, Abstract 599-46. For errata see ibid., p. 377. MR 0159174 (28:2391)
  • [1] A. Fletcher, J. C. P. Miller, L. Rosenhead &. L. J. Comrie, An Index of Mathematical Tables, second ed., vol. 1, 1962, p. 458. Blackwell, Oxford, England (for scientific Computing Service, London); American ed., Addison-Wesley. MR 0142796 (26:365a)
  • [2] British Association for the Advancement of Science, Mathematical Tables, vol. 10, 1952, p. 180, Cambridge Univ. Press.
  • [3] P. Brauer & E. Brauer, Z. Angew. Math. Mech., vol. 21, 1941, p. 177-182, especially p. 180-181. MR 0005195 (3:116a)
  • [4] British Association for the Advancement of Science, Reports for 1923, p. 293; for 1924, p. 280; for 1925, p. 244. London.
  • [1] H. Tallqvist, Sechsstellige Tafeln der 16 ersten Kugelfunktionen $ {P_n}(x)$, Acta. Soc. Sci. Fenn., Nova Ser. A, Tom II, No. 4, 43 p., Helsingfors, 1937.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-63-99179-8
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society