The Euler-Maclaurin functional for functions with a quasi-step discontinuity

Author:
Israel Navot

Journal:
Math. Comp. **17** (1963), 337-345

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1963-0155429-1

MathSciNet review:
0155429

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Israel Navot,*An extension of the Euler-Maclaurin summation formula to functions with a branch singularity*, J. Math. and Phys.**40**(1961), 271–276. MR**0140876****[2]**I. Navot, ``A further extension of the Euler Maclaurin summation formula,''*J. Math. Phys.*, v. 41, 1962, p. 155-163.**[3]**BAASMTC,*Mathematical Tables*, Vol. 1, Third Edition, Cambridge University Press, for the Royal Society, 1951.**[4]**Eugene Jahnke and Fritz Emde,*Tables of Functions with Formulae and Curves*, Dover Publications, New York, N. Y., 1945. 4th ed. MR**0015900****[5]**D. R. Hartree,*Numerical analysis*, Oxford, at the Clarendon Press, 1952. MR**0052871****[6]**Yudell L. Luke,*Simple formulas for the evaluation of some higher transcendental functions*, J. Math. and Phys.**34**(1956), 298–307. MR**0078047**, https://doi.org/10.1002/sapm1955341298**[7]**Philip J. Davis,*On the numerical integration of periodic analytic functions*, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, The University of Wisconsin Press, Madison, 1959, pp. 45–59. MR**0100354**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1963-0155429-1

Article copyright:
© Copyright 1963
American Mathematical Society