Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations


Author: C. Donald LaBudde
Journal: Math. Comp. 17 (1963), 433-437
MSC: Primary 65.35
DOI: https://doi.org/10.1090/S0025-5718-1963-0156455-9
MathSciNet review: 0156455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a new algorithm for reducing an arbitrary real square matrix to tri-diagonal form using real similarity transformations is described. The method is essentially a generalization of a method due to A. S. Householder for accomplishing the same reduction in the case where the matrix is real and symmetric.


References [Enhancements On Off] (What's this?)

  • [1] W. Givens, ``Numerical computation of the characteristic values of a real symmetric matrix,'' Oak Ridge National Laboratory Report ORNL 1574, 1954. MR 0063771 (16:177c)
  • [2] W. Givens, ``Computation of plane unitary rotations transforming a general matrix to triangular form,'' J. Soc. Indust. Appl. Math., v. 6, 1958, p. 26-50. MR 0092223 (19:1081e)
  • [3] A. S. Householder & F. L. Bauer, ``On certain methods for expanding the characteristic polynomial,'' Numer. Math., v. 1, 1959, p. 29-37. MR 0100962 (20:7387)
  • [4] C. Lanczos, ``An iterative method for the solution of the eigenvalue problem of linear differential and integral operators,'' J. Res. Nat. Bur. Standards, v. 45, 1950, p. 255-282. MR 0042791 (13:163d)
  • [5] H. R. Schwarz, ``Critere de stabilite pour des systemes d'equations a coefficients constants complexes,'' C. R. Acad. Sci. Paris, v. 242, 1956, p. 325-327. MR 0074609 (17:614f)
  • [6] J. H. Wilkinson, ``Stability of the reduction of a matrix to almost triangular and triangular forms by elementary similarity transformations,'' J. Assoc. Comput. Mach., v. 6, 1959, p. 336-359. MR 0106542 (21:5273)
  • [7] J. H. Wilkinson, ``Householder's method for the solution of the algebraic eigenvalue problem,'' Comput. J., v. 3, 1960, p. 23-27. MR 0111131 (22:1995)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.35

Retrieve articles in all journals with MSC: 65.35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1963-0156455-9
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society