Jacobi Polynomial Expansions of a Generalized Hypergeometric Function over a Semi-Infinite Ray

By Y. L. Luke and J. Wimp

1. Introduction. Suppose \(f(x) \) is continuous and has a piecewise continuous derivative for \(0 \leq x/\lambda \leq 1 \). Then \(f(x) \) may be expanded into a uniformly convergent series of shifted Jacobi polynomials in the form

\[
f(x) = \sum_{n=0}^{\infty} a_n(\lambda) R_n^{(\alpha, \beta)}(x/\lambda),
\]

(1.1)

where \(R_n^{(\alpha, \beta)}(x) = P_n^{(\alpha, \beta)}(2x - 1) \) and the latter is the usual notation for the Jacobi polynomial \([1, \text{Ch. 10}]\). Various techniques are available for the determination of the coefficients \(a_n(\lambda) \). In this connection, see, for example, the references \([2, 3, 4, 5, 6, 7]\).

Suppose that \(f(x) \) satisfies the above conditions for \(1 \leq x/\lambda \leq \infty \) where \(|\arg \lambda| < \varphi \). Then we may write

\[
f(x) = \sum_{n=0}^{\infty} b_n(\lambda) R_n^{(\alpha, \beta)}(\lambda/x),
\]

(1.2)

where \(R_n^{(\alpha, \beta)}(x) = P_n^{(\alpha, \beta)}(2x - 1) \) and the latter is the usual notation for the Jacobi polynomial \([1, \text{Ch. 10}]\). Various techniques are available for the determination of the coefficients \(a_n(\lambda) \). In this connection, see, for example, the references \([2, 3, 4, 5, 6, 7]\).

Suppose that \(f(x) \) satisfies the above conditions for \(1 \leq x/\lambda \leq \infty \) where \(|\arg \lambda| < \varphi \). Then we may write

\[
f(x) = \sum_{n=0}^{\infty} b_n(\lambda) R_n^{(\alpha, \beta)}(\lambda/x),
\]

(1.2)

where \(R_n^{(\alpha, \beta)}(x) = P_n^{(\alpha, \beta)}(2x - 1) \) and the latter is the usual notation for the Jacobi polynomial \([1, \text{Ch. 10}]\). Various techniques are available for the determination of the coefficients \(a_n(\lambda) \). In this connection, see, for example, the references \([2, 3, 4, 5, 6, 7]\).

If \(f(x) \) has an asymptotic expansion of the form

\[
f(x) \sim \sum_{n=0}^{\infty} c_n x^{-n}, \quad x \to \infty, \quad |\arg x| < \varphi,
\]

(1.3)

then (1.2) may be interpreted as a summability process which converts the generally divergent expansion (1.3) into a convergent expansion. If \(f(x) \) in (1.3) is of hypergeometric type, then the coefficients \(b_n(\lambda) \) may be found formally at least using the procedures \([5, 6]\). These yield for \(b_n(\lambda) \) an asymptotic series in \(\lambda \) which is also of hypergeometric type. The asymptotic representation for \(b_n(\lambda) \) in general is not suitable for computation. We are confronted with two problems: one is the interpretation of the asymptotic series for \(b_n(\lambda) \), and the other is the computation of \(b_n(\lambda) \).

In this paper, we show how both problems can be solved for a confluent hypergeometric function. Actually we derive a representation for \(b_n(\lambda) \) when \(f(x) \) is the G-function, which includes the confluent hypergeometric function as a special case. Our computational scheme for \(b_n(\lambda) \) is exhibited only when \(f(x) \) is a confluent hypergeometric function, although the ideas involved can be extended to cover other special cases of the G-function as well.

In Section II, we prove an expansion theorem of the form (1.2) when \(f(x) \) is the...
G-function and show how both convergent and asymptotic representations for $b_n(\lambda)$ may be derived. These results are specialized in Section III for the case when $f(x)$ is a confluent hypergeometric function, and in Section IV it is shown how $b_n(\lambda)$ may be computed by a recursion scheme. Finally, in Section V, we tabulate coefficients for the cases where $R_n^{(a,b)}(x)$ is the shifted Chebyshev polynomial and $f(x)$ is the error function, the exponential, sine and cosine integrals, and the Bessel functions $K_\ell(x)$ and $K_\ell(x)$.

2. Expansion of the G-Function. The G-function is given by the Mellin-Barnes integral

$$G_{p,q}(\lambda x | a^p, b^q) = \frac{1}{2\pi i} \int_L \prod_{j=1}^{m} \Gamma(b_j - s) \prod_{j=m+1}^{p} \Gamma(1 - b_j + s) \prod_{j=1}^{k} \Gamma(1 - a_j + s) \prod_{j=k+1}^{p} \Gamma(1 - a_j - s) \ (\lambda x)^s \ ds,$$

where an empty product is interpreted as 1, $0 \leq m \leq q$, $0 \leq n \leq p$ and the parameters are such that no pole of $\Gamma(b_j - s)$, $j = 1, 2, \cdots, m$ coincides with any pole of $\Gamma(1 - a_h + s)$, $h = 1, 2, \cdots, k$. We assume x is real and the path L runs parallel to the imaginary axis and is indented so that the poles of $\Gamma(b_j - s)$, $j = 1, 2, \cdots, m$, are to the right, and all the poles of $\Gamma(1 - a_h + s)$, $h = 1, 2, \cdots, k$, to the left of L. The integral converges if $p + q < 2(m + k)$ and $| \arg \lambda | < (m + k - p/2 - q/2)\pi$. For a treatment of the G-function, see [1, Ch. 5].

Now from [1, 10.20(3)] we have the expansion

$$x^s = \frac{\Gamma(a + b + 1)(n + 1)}{\Gamma(n + a + b + 2)\Gamma(1 - s - n)} R_n^{(a,b)}(1/x), \ 1 < x < \infty,$$

uniformly for $Re(s) \leq \delta$, $\delta > 0$, $0 = \min(\beta + 1, \beta/2 + \frac{1}{4})$, $\alpha > -1$, $\beta > -1$. Put (2.2) in (2.1) and integrate along the path from $\lambda - \delta - i\infty$ to $\lambda - \delta + i\infty$. We then get

Theorem I. Let

1. α, β and x be real, $\alpha > -1, \beta > -1, 1 < x < \infty$.

Let a real positive δ exist such that

2. (a) $Re(a_j - 1) < \mu - \delta, j = 1, 2, \cdots, k$; (b) $Re(b_j) > \mu - \delta, j = 1, 2, \cdots, m, \mu - \delta < 1, \mu = \min(\beta + 1, \beta/2 + \frac{1}{4})$.

3. $p + q < 2(m + k), | \arg \lambda | < (m + k - p/2 - q/2)\pi, \lambda \neq 0, 0 \leq n \leq p$.

Then

$$G_{p,q}(\lambda x^s | a^p, b^q) = \sum_{n=0}^{\infty} (2n + \alpha + \beta + 1)(n + \beta + 1) \times G_{p+2,q+2}(\lambda | a^{p}, b^{q} + 1, 1) R_n^{(a,b)}(1/x).$$

Remark. Assumptions 2 above insure the separation of poles and specify the regions in which they lie according to the remarks surrounding (2.1). Notice, however, that poles of $\Gamma(b_j - s)$ may lie to the left of the contour. They may be excluded.
by indentations since they lie in a region where the series for x^a converges uniformly, provided they do not coincide with any of the poles of $\Gamma(1 - a + s)$. Hence, we may replace $2(b)$ by the weaker but more complicated condition

$$2(b) \quad 1 + \delta_{j-2} - \alpha_j \neq 0, -1, -2, \cdots,$$

$$j = 1, 2, \cdots m + 2, h = 1, 2, \cdots k, \delta_{-2} = 1, \delta_{-1} = \beta + 1, \delta_{j-2} = b_j, j > 1.$$

Notice from the definition of the G-function that

$$G_{p+2,q+2}(\lambda |_{1,0}^{\beta+1,0} |_{1,0}^{\beta+1,0}) = (-)^n G_{p+2,q+2}(\lambda |_{1,0}^{\beta+1,0} |_{1,0}^{\beta+1,0}).$$

If $|\arg \lambda| < \frac{1}{2}(p - q + 1)\pi$, an asymptotic representation for the coefficients of $R_n(a,b)(1/x)$ in (2.3) follows by application of a result in [1, 5.3(6)]. An ascending series representation follows when [1, 5.3(5)] is applied to the right-hand side of (2.4).

3. Expansion of a Confluent Hypergeometric Function. We consider the function [1, Ch. 6],

$$G(a, c | x) = \frac{\Gamma(a) \Gamma(c)}{\Gamma(a+c)} = \sum_{n=0}^{\infty} C_n(a) T_n(x),$$

Also, denote by $T_0(x)$ the shifted Chebyshev polynomial

$$T_n(x) = T_n(x - 1) = n! R_n^{-1/2,-1/2}(x).$$

From Theorem I, we get

Theorem II. Let

1. $1 \leq x \leq \infty$;
2. $a \neq 0, -1, -2, \cdots$; $\alpha \neq 0, -1, -2, \cdots$;
3. $|\arg \lambda| < 3\pi/2, \lambda \neq 0$.

Then

$$G(a, c | x) = \sum_{n=0}^{\infty} C_n(a) T_n(x),$$

where

$$C_n(a) = \frac{\epsilon_n}{\lambda^{1/2} \Gamma(a) \Gamma(c)} G_{2,4}(\lambda |_{0,0}^{1,0,0,0} |_{0,0}^{1,0,0,0}), \quad \epsilon_0 = 1, \epsilon_n = 2, n > 0,$$

or

$$C_n(a) = \frac{\epsilon_n(-)^n}{\lambda^{1/2} \Gamma(a) \Gamma(c)} G_{2,4}(\lambda |_{0,0}^{1,0,0,0} |_{0,0}^{1,0,0,0}).$$

Also, if none of the quantities $\frac{1}{2}, a$ and σ differ by an integer

$$C_n(a) = \frac{\epsilon_n(-)^n}{\lambda^{1/2}} \left\{ (a)_{-1/2}(\sigma)_{-1/2} \lambda^{1/2} \frac{\Gamma(a+1/2, -n/2, -n/2-\sigma)}{\Gamma(a+n/2+1)} \right\},$$

$$+ \frac{\Gamma(\frac{1}{2} - a)(\gamma)_{-1/2} \lambda^{1/2} \frac{\Gamma(a+1/2, -n/2-\sigma)}{\Gamma(a+n/2+1)}},$$

$$+ \frac{\Gamma(\frac{1}{2} - \sigma)(\sigma)_{-1/2} \lambda^{1/2} \frac{\Gamma(\sigma)}{\Gamma(\sigma+1)}}{\Gamma(n - \sigma + 1)}.$$
and

\[C_n(\lambda) \sim \frac{\epsilon_n(-)^n(a)\epsilon_n(\sigma)n!}{(4\lambda)^n} {}_3F_1 \left(\frac{n+1/2, n+a, n+\alpha}{2n+1} \left| -\frac{1}{\lambda} \right. \right), \quad |\lambda| \to \infty, \quad |\arg \lambda| < \pi. \]

Remark. Condition 1 of Theorem I is conservative. By an appeal to the convergence properties of expansions in Chebyshev polynomials [7], the range of \(x \) may be extended to give condition 1 above.

Since (3.3) converges,

\[\lim_{n \to \infty} C_n(\lambda) = 0. \]

For later use, we record the fact that

\[\lim_{x \to \infty} (\lambda x)^a \psi(a, c | \lambda x) = 1, \quad |\arg \lambda| < \frac{3\pi}{2}. \]

4. Calculation of the Coefficients \(C_n(\lambda) \). Let

\[\varphi_{1,n}(\lambda) = \frac{(-)^n}{\epsilon_n} C_n(\lambda). \]

Following the method developed in [8], we can show from the representation (3.7) that \(\varphi_{1,n}(\lambda) \) satisfies the recursion relation

\[\varphi_n(\lambda) + (A_n + B_n\lambda)\varphi_{n+1}(\lambda) + (C_n + D_n\lambda)\varphi_{n+2}(\lambda) + E_n\varphi_{n+3}(\lambda) = 0, \]

where

\[A_n = (2n + 2) \left[1 - \frac{(n + \frac{3}{2})(n + a + 1)(n + \sigma + 1)}{(n + 2)(n + a)(n + \sigma)} \right], \]

\[B_n = D_n = -4(n + 1)/(n + a)(n + \sigma), \]

\[C_n = -1 + [2(n + 1)(2n + 3)/(n + a)(n + \sigma)], \]

\[E_n = -(n + 1)(n - a + 3)(n - \sigma + 3)/(n + 2)(n + a)(n + \sigma). \]

We prove that the coefficients may be readily evaluated using (4.2) in the backward direction. This backward recursion technique has been treated by many authors [9], [10], [11], [12], [13]. The idea is as follows.

For fixed \(\lambda \), arbitrary \(\eta \) and \(\nu \) sufficiently large set

\[\varphi_{\nu}(\lambda) = \varphi_{\nu-1}(\lambda) = 0, \]

\[\varphi_{\nu-\frac{1}{2}}(\lambda) = \eta. \]

The sequence \(\varphi_{\nu-\frac{1}{2}}(\lambda), \ldots, \varphi_{\nu}(\lambda), \ldots, \varphi_1(\lambda), \varphi_0(\lambda) \) is generated from (4.2). Using (3.9) and

\[T_n^*(0) = (-)^n \]

in (3.3) we would expect that if

\[\omega_\nu = \sum_{\nu=0}^{\nu-2} \epsilon_\nu \varphi_\nu(\lambda), \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[C_n(\lambda) \sim (-)^n \epsilon_n \varphi_n^{(\nu)}(\lambda) / \omega_n, \]

with increasing accuracy as \(n \to \infty \). In fact if we define
\[\varphi_{1,n}^{(\nu)}(\lambda) = \varphi_{1,0}(\lambda) \varphi_n^{(\nu)}(\lambda) / \varphi_0^{(\nu)}(\lambda), \]
we have:

Theorem III. Let \(|\arg \lambda| < \pi, \lambda \neq 0 \), and neither \(\alpha \) nor \(\sigma \) be a negative integer or zero. Then
\[\lim_{n \to \infty} \varphi_{1,n}^{(\nu)}(\lambda) = \varphi_{1,1}(\lambda). \]

Proof. Denote by \(\varphi_{1,n}(\lambda), \varphi_{2,n}(\lambda) \) and \(\varphi_{3,n}(\lambda) \) the three linearly independent solutions of (4.2); \(\varphi_{1,n}(\lambda) \) is the solution we wish to calculate. We may write
\[\varphi_n^{(\nu)} = \xi_1^{(\nu)} \varphi_{1,n} + \xi_2^{(\nu)} \varphi_{2,n} + \xi_3^{(\nu)} \varphi_{3,n}, \quad n < \nu - 2, \]
and the conditions (4.4) and (4.5) give
\[0 = \xi_1^{(\nu)} \varphi_{1,v} + \xi_2^{(\nu)} \varphi_{2,v} + \xi_3^{(\nu)} \varphi_{3,v}, \]
\[0 = \xi_1^{(\nu)} \varphi_{1,v-1} + \xi_2^{(\nu)} \varphi_{2,v-1} + \xi_3^{(\nu)} \varphi_{3,v-1}, \]
\[\eta = \xi_1^{(\nu)} \varphi_{1,v-2} + \xi_2^{(\nu)} \varphi_{2,v-2} + \xi_3^{(\nu)} \varphi_{3,v-2}, \]
where \(\xi_1^{(\nu)}, \xi_2^{(\nu)} \) and \(\xi_3^{(\nu)} \) are independent of \(n \).

\[\frac{\xi_2^{(\nu)}}{\xi_1^{(\nu)}} = \gamma_v, \quad \frac{\xi_3^{(\nu)}}{\xi_1^{(\nu)}} = \delta_v, \]
\[\gamma_v = [-\varphi_{1,v-2} + \varphi_{1,v}, -\varphi_{2,v-1}, 1] / \tau_v, \]
\[\delta_v = [-\varphi_{1,v-1} + \varphi_{1,v}, 1 + \varphi_{2,v}] / \tau_v, \]
\[\tau_v = [\varphi_{1,v}, \varphi_{2,v}, 1]. \]

Thus
\[\varphi_{1,n}^{(\nu)} = \frac{\varphi_{1,n} \left\{ 1 + (\gamma \varphi_{2,n} / \varphi_{1,n}) + (\delta \varphi_{3,n} / \varphi_{1,n}) \right\}}{1 + (\gamma \varphi_{2,n} / \varphi_{1,n}) + (\delta \varphi_{3,n} / \varphi_{1,n})}. \]

We will show that
\[\lim_{n \to \infty} \gamma_v = \lim_{n \to \infty} \delta_v = 0. \]
Equation (3.8) gives
\[\lim_{n \to \infty} \varphi_{1,v} = 0. \]

It may be directly verified that
\[\varphi_{2,n} = C n^{2/3(\alpha+\sigma-2)} \exp \left[\frac{\lambda}{n^{1/3}} \right] \cdot \left[1 + O \left(\frac{1}{n} \right) \right], \quad |\arg \lambda| < \pi, \]

* Henceforth we write, \(\xi_1^{(\nu)}(\lambda) = \xi_1^{(\nu)}, \varphi_{1,n}(\lambda) = \varphi_{1,n}, \) etc.
Table I

Coefficients for the Series

\[
\begin{align*}
-Ei(-x) &= \int_x^\infty \frac{e^{-t}}{t} \, dt = \frac{e^{-x}}{x} \sum_{n=0}^{\infty} A_n T_n \left(\frac{4}{x} \right), \\
\text{Erfc}(x) &= \int_x^\infty e^{-t^2} \, dt = \frac{e^{-x^2}}{2x} \sum_{n=0}^{\infty} B_n T_{2n} \left(\frac{2}{x} \right),
\end{align*}
\]

\[4 \leq x \leq \infty, \quad 2 \leq x \leq \infty.\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(A_n)</th>
<th>(B_n)</th>
<th>(n)</th>
<th>(A_n)</th>
<th>(B_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.90535</td>
<td>40999</td>
<td>15873</td>
<td>(00)</td>
<td>0.94960</td>
</tr>
<tr>
<td>1</td>
<td>-0.86481</td>
<td>17855</td>
<td>25987</td>
<td>1490</td>
<td>(01)</td>
</tr>
<tr>
<td>2</td>
<td>0.72241</td>
<td>01548</td>
<td>74659</td>
<td>475</td>
<td>(02)</td>
</tr>
<tr>
<td>3</td>
<td>-0.80075</td>
<td>39457</td>
<td>55738</td>
<td>82</td>
<td>(03)</td>
</tr>
<tr>
<td>4</td>
<td>0.10999</td>
<td>13443</td>
<td>26613</td>
<td>89</td>
<td>(04)</td>
</tr>
<tr>
<td>5</td>
<td>-0.17173</td>
<td>32998</td>
<td>93776</td>
<td>7</td>
<td>(04)</td>
</tr>
<tr>
<td>6</td>
<td>0.29856</td>
<td>27514</td>
<td>47928</td>
<td></td>
<td>(05)</td>
</tr>
<tr>
<td>7</td>
<td>-0.56956</td>
<td>49145</td>
<td>7719</td>
<td></td>
<td>(06)</td>
</tr>
<tr>
<td>8</td>
<td>0.11226</td>
<td>50839</td>
<td>7141</td>
<td></td>
<td>(06)</td>
</tr>
<tr>
<td>9</td>
<td>-0.24950</td>
<td>30440</td>
<td>260</td>
<td></td>
<td>(07)</td>
</tr>
<tr>
<td>10</td>
<td>0.59232</td>
<td>24201</td>
<td>83</td>
<td></td>
<td>(08)</td>
</tr>
<tr>
<td>11</td>
<td>-0.13599</td>
<td>57664</td>
<td>81</td>
<td></td>
<td>(08)</td>
</tr>
<tr>
<td>12</td>
<td>0.33846</td>
<td>62888</td>
<td>8</td>
<td></td>
<td>(09)</td>
</tr>
<tr>
<td>13</td>
<td>-0.87378</td>
<td>53904</td>
<td></td>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>14</td>
<td>0.23315</td>
<td>86863</td>
<td></td>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>15</td>
<td>-0.64114</td>
<td>8105</td>
<td></td>
<td></td>
<td>(11)</td>
</tr>
<tr>
<td>16</td>
<td>0.18122</td>
<td>4698</td>
<td></td>
<td></td>
<td>(11)</td>
</tr>
<tr>
<td>17</td>
<td>-0.52538</td>
<td>318</td>
<td></td>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td>18</td>
<td>0.15992</td>
<td>183</td>
<td></td>
<td></td>
<td>(12)</td>
</tr>
</tbody>
</table>
Table II

Coefficients for the Series

\[K_0(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \sum_{n=0}^{\infty} A_n T_n^* \left(\frac{1}{x} \right), \quad \frac{2}{x} \leq x \leq \infty, \]

\[K_1(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \sum_{n=0}^{\infty} B_n T_n^* \left(\frac{1}{x} \right), \quad \frac{2}{x} \leq x \leq \infty. \]

<table>
<thead>
<tr>
<th>n</th>
<th>A_n</th>
<th>B_n</th>
<th>n</th>
<th>A_n</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.97354</td>
<td>0.0764</td>
<td>3</td>
<td>0.09201</td>
<td>0.0078</td>
</tr>
<tr>
<td>1</td>
<td>-0.23001</td>
<td>0.05450</td>
<td>2</td>
<td>0.12525</td>
<td>0.06114</td>
</tr>
<tr>
<td>3</td>
<td>-0.10252</td>
<td>0.45722</td>
<td>4</td>
<td>0.11130</td>
<td>0.34096</td>
</tr>
<tr>
<td>5</td>
<td>-0.14615</td>
<td>0.29450</td>
<td>6</td>
<td>0.22075</td>
<td>0.07885</td>
</tr>
<tr>
<td>7</td>
<td>-0.37175</td>
<td>0.03635</td>
<td>8</td>
<td>-0.08410</td>
<td>0.08956</td>
</tr>
<tr>
<td>9</td>
<td>-0.13544</td>
<td>0.06576</td>
<td>10</td>
<td>0.24543</td>
<td>0.09085</td>
</tr>
<tr>
<td>11</td>
<td>-0.63491</td>
<td>0.07811</td>
<td>12</td>
<td>0.14808</td>
<td>0.03144</td>
</tr>
<tr>
<td>13</td>
<td>-0.36021</td>
<td>0.02795</td>
<td>14</td>
<td>0.09086</td>
<td>0.0015</td>
</tr>
<tr>
<td>15</td>
<td>-0.23777</td>
<td>0.02337</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>(A_n)</td>
<td>(B_n)</td>
<td>(n)</td>
<td>(A_n)</td>
<td>(B_n)</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>0.96578 82803 51851 83021 (00)</td>
<td>0.10728 86713 38433 09526 (00)</td>
<td>21</td>
<td>0.17469 921 (12)</td>
<td>-0.81934 01 (13)</td>
</tr>
<tr>
<td>1</td>
<td>-0.43060 83777 85967 3425 (-01)</td>
<td>0.99993 50055 36349 5732 (-01)</td>
<td>22</td>
<td>-0.38470 01 (-13)</td>
<td>0.60587 82 (-13)</td>
</tr>
<tr>
<td>2</td>
<td>-0.73143 71174 81046 088 (-02)</td>
<td>-0.81628 39500 94241 970 (-02)</td>
<td>23</td>
<td>0.20193 (-15)</td>
<td>-0.27093 20 (-13)</td>
</tr>
<tr>
<td>3</td>
<td>-0.1705 23578 98680 064 (-03)</td>
<td>-0.29696 08650 56773 29 (-03)</td>
<td>24</td>
<td>0.53997 7 (-14)</td>
<td>0.88808 3 (-14)</td>
</tr>
<tr>
<td>4</td>
<td>-0.098057 88573 27002 1 (-04)</td>
<td>0.22289 14945 48289 18 (-03)</td>
<td>25</td>
<td>-0.35066 0 (-14)</td>
<td>-0.18751 4 (-14)</td>
</tr>
<tr>
<td>5</td>
<td>-0.22743 26220 46550 8 (-04)</td>
<td>-0.41721 77635 53092 6 (-04)</td>
<td>26</td>
<td>0.15788 2 (-14)</td>
<td>-0.8110 (-16)</td>
</tr>
<tr>
<td>6</td>
<td>0.98240 25732 25254 (-05)</td>
<td>0.21254 28930 87307 (-05)</td>
<td>27</td>
<td>-0.52547 (-15)</td>
<td>0.34480 (-15)</td>
</tr>
<tr>
<td>7</td>
<td>-0.18973 43014 87133 (-05)</td>
<td>0.13157 50436 91368 (-05)</td>
<td>28</td>
<td>0.11378 (-15)</td>
<td>-0.22564 (-15)</td>
</tr>
<tr>
<td>8</td>
<td>0.10063 43594 1568 (-06)</td>
<td>-0.55848 57495 6974 (-06)</td>
<td>29</td>
<td>0.512 (-17)</td>
<td>-0.10258 (-15)</td>
</tr>
<tr>
<td>9</td>
<td>0.80819 36482 224 (-07)</td>
<td>0.12353 72625 6629 (-06)</td>
<td>30</td>
<td>-0.2244 (-16)</td>
<td>-0.3571 (-16)</td>
</tr>
<tr>
<td>10</td>
<td>-0.38976 28287 529 (-07)</td>
<td>-0.10318 72179 187 (-07)</td>
<td>31</td>
<td>0.1532 (-16)</td>
<td>0.845 (-17)</td>
</tr>
<tr>
<td>11</td>
<td>0.10335 65032 550 (-07)</td>
<td>-0.50159 03675 67 (-07)</td>
<td>32</td>
<td>-0.732 (-17)</td>
<td>-0.3 (-19)</td>
</tr>
<tr>
<td>12</td>
<td>-0.14104 34487 59 (-08)</td>
<td>0.36915 98898 01 (-07)</td>
<td>33</td>
<td>0.273 (-17)</td>
<td>-0.146 (-17)</td>
</tr>
<tr>
<td>13</td>
<td>-0.25232 07840 0 (-09)</td>
<td>-0.10980 57370 10 (-08)</td>
<td>34</td>
<td>-0.73 (-18)</td>
<td>0.110 (-17)</td>
</tr>
<tr>
<td>14</td>
<td>0.26099 83632 0 (-09)</td>
<td>0.20285 59643 1 (-09)</td>
<td>35</td>
<td>0.6 (-19)</td>
<td>-0.56 (-18)</td>
</tr>
<tr>
<td>15</td>
<td>-0.10597 88925 4 (-09)</td>
<td>-0.27237 6669 (-11)</td>
<td>36</td>
<td>0.9 (-19)</td>
<td>0.23 (-18)</td>
</tr>
<tr>
<td>16</td>
<td>0.28970 30157 (-10)</td>
<td>-0.19967 52281 (-10)</td>
<td>37</td>
<td>-0.8 (-19)</td>
<td>-0.7 (-19)</td>
</tr>
<tr>
<td>17</td>
<td>-0.41023 1426 (-11)</td>
<td>0.11219 38506 (-10)</td>
<td>38</td>
<td>-0.5 (-19)</td>
<td>0.1 (-19)</td>
</tr>
<tr>
<td>18</td>
<td>-0.10437 6957 (-11)</td>
<td>0.40081 1186 (-11)</td>
<td>39</td>
<td>-0.2 (-19)</td>
<td>0.0 (-20)</td>
</tr>
<tr>
<td>19</td>
<td>0.10904 1845 (-11)</td>
<td>0.96702 841 (-12)</td>
<td>40</td>
<td>0.1 (-19)</td>
<td>-0.1 (-19)</td>
</tr>
<tr>
<td>20</td>
<td>-0.52214 239 (-12)</td>
<td>-0.71861 28 (-13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
where C_1 is independent of n. The third linearly independent solution of (4.2) is the $L_{2,2}(-\lambda)$ term appearing in [15, 1.3.3(15)] which arises in the asymptotic expansion of (4.22) for large λ. A limit process, explained in [15, 1.3.4] is used to obtain $\varphi_{3,n}$, but our discussion here is necessarily brief. We need only the estimate

\begin{equation}
\varphi_{3,n} = C_2 \frac{\Gamma(n + a - 1) \Gamma(n + \sigma - 1)}{(4\lambda)^n n!} \left[1 + O\left(\frac{1}{n^2}\right)\right],
\end{equation}

where C_2 is independent of n. Thus

\begin{equation}
\lim_{r \to \infty} |\varphi_{2,r}| = \lim_{r \to \infty} |\varphi_{3,r}| = \infty.
\end{equation}

Also, from (4.23) and (4.24), we have

\begin{equation}
\tau_r = -\varphi_{2,r} \varphi_{3,r} \left[1 + O\left(\frac{1}{r}\right)\right].
\end{equation}

Hence (4.20) is easily shown and the statement (4.10) follows from (4.19).

5. Tables. Tables I–III contain coefficients to 20 D for the expansions of several important cases of the confluent hypergeometric function [1, 6.9]. Coefficients corresponding to different ranges of the independent variable as well as those for other functions, e.g., $J_\nu(x)$ and $Y_\nu(x)$, are under construction and the present tables are selected examples only. The expansions are readily evaluated using a nesting procedure described in [4], [7]. For similar expansions, see [7], and for many Chebyshev expansions of functions over a finite interval, see [2]–[6] and the references given there. The number in parenthesis after each entry in the tables is the power of 10 by which the entry is to be multiplied.

6. Acknowledgment. This paper covers research initiated by the Applied Mathematics Laboratory, David W. Taylor Model Basin, Washington, D. C., under Contract No. Nonr-2638 (00) (X).

The authors acknowledge with thanks the valuable assistance of our colleagues, particularly the suggestions of Jerry Fields. The coefficients tabulated in Section V were computed on the IBM 1620, and the authors are indebted to the experience and skill of Dean Lawrence, who supervised the calculations.

Midwest Research Institute
Kansas City, Missouri