Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The evaluation of some definite integrals involving Bessel functions which occur in hydrodynamics and elasticity


Author: A. H. Van Tuyl
Journal: Math. Comp. 18 (1964), 421-432
MSC: Primary 33.25
DOI: https://doi.org/10.1090/S0025-5718-1964-0165154-X
MathSciNet review: 0165154
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Weinstein, ``On axially symmetric flows,'' Quart. Appl. Math., v. 5, 1948, p. 429-444. MR 0026167 (10:116e)
  • [2] A. Weinstein, ``On the torsion of shafts of revolution,'' Proc. VIIth Int. Congr. Appl. Mech., v. 1, 1948, p. 108. MR 0039502 (12:559e)
  • [3] H. Bateman, Partial Differential Equations of Mathematical Physics, Dover, New York, 1944. MR 0010909 (6:86e)
  • [4] A. G. Webster, Partial Differential Equations of Mathematical Physics, Hafner, New York, 1947.
  • [5] G. Eason, B. Noble & I. N. Sneddon, ``On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,'' Philos. Trans. Roy. Soc., v. 247, 1955, p. 529-551. MR 0069961 (16:1107f)
  • [6] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. MR 0141801 (25:5198)
  • [7] W. M. Hicks, ``On toroidal functions,'' Philos. Trans. Roy. Soc., v. 171, 1881, p. 609-652.
  • [8] G. M. Minchin, ``The magnetic field of a circular current,'' Philos. Mag., v. 35, 1893, p. 354-365.
  • [9] A. Van Tuyl, ``On the axially symmetric flow around a new family of half-bodies,'' Quart. Appl. Math., v. 7, 1950, p. 399-409. MR 0033682 (11:474e)
  • [10] M. R. Shura-Bura, ``Calculation of an integral containing a product of Bessel functions,'' Dokl. Akad. Nauk. SSSR., v. 73, 1950, p. 901-903. MR 0037403 (12:256g)
  • [11] M. A. Sadowsky & E. Sternberg, ``Elliptic integral representations of axially symmetric flows,'' Quart. Appl. Math., v. 8, 1950, p. 113-126. MR 0037425 (12:259g)
  • [12] G. E. Pringle, ``The potential of a circular current,'' Proc. Cambridge Philos. Soc., v. 57, 1961, p. 385-392. MR 0122319 (22:13045)
  • [13] H. E. Fettis, ``Note on $ \int_0^\infty {{e^{ - x}}{J_0}} (\eta x/\xi ){J_1}(x/\xi ){x^{ - n}}dx$,'' Math. Comp., v. 14, 1960, p. 372-374. MR 0120396 (22:11150)
  • [14] G. P. Weeg, ``Numerical Integration of $ \int_0^\infty {{e^{ - x}}} {J_0}(\eta x/\xi ){J_1}(x/\xi ){x^{ - n}}dx$,'' MTAC, v. 13, 1959, p. 312-313. MR 0108890 (21:7602)
  • [15] A. Weinstein, ``Discontinuous integrals and generalized potential theory,'' Trans. Amer. Math. Soc., v. 63, 1948, p. 342-354. MR 0025023 (9:584d)
  • [16] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, 1944. MR 0010746 (6:64a)
  • [17] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [18] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press, 1931.
  • [19] P. F. Byrd & M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1954. MR 0060642 (15:702a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33.25

Retrieve articles in all journals with MSC: 33.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1964-0165154-X
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society