Evaluation at half periods of Weierstrass' elliptic function with rhombic primitive period-parallelogram

Authors:
Chih Bing Ling and Chen-Peng Tsai

Journal:
Math. Comp. **18** (1964), 433-440

MSC:
Primary 65.25

DOI:
https://doi.org/10.1090/S0025-5718-1964-0165661-X

MathSciNet review:
0165661

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**C. B. Ling, ``Evaluation at half periods of Weierstrass' elliptic function with rectangular primitive period-parallelogram,''*Math. Comp.*, v. 14, 1960, p. 67-70. MR**0110179 (22:1061)****[2]**E. T. Copson,*Theory of Functions of a Complex Variable*, Oxford University Press, New York, 1935, p. 359-362.**[3]**A. Erdelyi, et al.,*Higher Transcendental Functions*, Vol. 2, McGraw-Hill, New York, 1953, p. 328-361. In the formulas (8) and (9) on p. 355, the summation should each begin with*n*= 1 instead of*n*= 0.**[4]**J. W. L. Glaisher, ``Tables of etc. and etc. to 32 places of decimals,''*Quart. J. Pure Appl. Math.*, v. 45, 1914, p. 141-158.**[5]**British Association for Advancement of Science,*Mathematical Tables*, Vol. 1,*Circular and hyperbolic functions*, etc., Cambridge University Press, 1946, p. 24-29. MR**0014819 (7:337b)****[6]**C. E. Van Orstrand, ``Tables of the exponential function and of the circular sine and cosine to radian argument,'' Memoirs of U. S. National Academy of Sciences, Vol. 14, 1925, Fifth Memoir, p. 3-79.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1964-0165661-X

Article copyright:
© Copyright 1964
American Mathematical Society