Vector Partitions and Combinatorial Identities

By M. S. Cheema

In this note we show how certain relations between vector partition functions can be deduced from certain identities. A relation connecting vector partitions having odd components and those having distinct parts will be proved. A combinatorial proof of Jacobi’s Identity similar to Franklin’s proof of Euler identity is suggested. The last section includes numerical values of $P_r(n, m)$ and $q_r(n, m)$. These results suggest the unique maxima property of $P_r(n, m)$ for fixed n, m and r varying.

In the Jacobi Identity

$$
\prod_{n=1}^{\infty} \left(1 - q^{2n} \right) \left(1 + q^{2n-1} \right) \left(1 + q^{2n-1} t \right) = \sum_{n=0}^{\infty} q^n t^n
$$

make the substitution $q^2 = xy, t^2 = x/y$ and change x to $-x$, y to $-y$ to obtain

$$
\prod_{n=1}^{\infty} \left(1 - x^n y^n \right) \left(1 - x^n y^{-n} \right) \left(1 - x^{-n-1} y^n \right) = \sum_{n=0}^{\infty} (-1)^n x^{n(n+1)/2} y^{n(n-1)/2}.
$$

This when interpreted combinatorially yields the following

Theorem I. The excess of the number of partitions of (n, m) into even number of distinct parts of the type $(a, a - 1), (b - 1, b), (c, c)$ over those into odd number of such parts is $(-1)^r$ or 0 according as (n, m) is of the type $(r(r+1)/2, r(r-1)/2)$ or not.

Let $a(n, m)$ denote the number of partitions of (n, m) into distinct parts $(a, a - 1), (b - 1, b)$ so that we have the generating function

$$
\sum_{n,m=0}^{\infty} a(n, m) x^n y^m = \prod_{n=1}^{\infty} \left(1 + x^n y^{n-1} \right) \left(1 + x^{-n-1} y^n \right).
$$

In 1.1 making the substitution $q^2 = xy, t^2 = x/y$ we obtain

$$
\prod_{n=1}^{\infty} \left(1 + x^n y^{n-1} \right) \left(1 + x^{-n-1} y^n \right) = \left\{ \prod_{n=1}^{\infty} \left(1 - x^n y^n \right) \right\}^{-1} \left\{ \sum_{n=0}^{\infty} x^{n(n+1)/2} y^{n(n-1)/2} \right\}
$$

$$
= \left\{ \sum_{n=1}^{\infty} p(n) x^n y^n \right\} \left\{ \sum_{n=0}^{\infty} x^{n(n+1)/2} y^{n(n-1)/2} \right\}.
$$

Equating coefficients Carlitz [2] obtained

$$
a(n, m) = p(n - \frac{1}{2}(n - m)(n - m + 1)).
$$

Conversely if one can prove this result combinatorially it yields a proof of Jacobi’s Identity, such a proof has been obtained by Wright in a forthcoming paper by setting up a 1-1 correspondence between the two types of partitions.

This is done by placing a triangular array of $(n - m) (n - m + 1)/2$ dots on the graph of each partition of $n - \frac{1}{2}(n - m) (n - m + 1)$, the columns under the diagonal and rows on the right side determine uniquely parts $(a, a - 1), (b - 1, b)$ of (n, m).

Received November 18, 1963. Revised January 30, 1964. Research supported in part by N.S.F. Grant number 575-503.
If one can prove Theorem I by combinatorial arguments similar to Franklin’s proof of Euler identity

\[
\prod_{r=1}^{\infty} (1 - x^r) = \sum_{\infty} (-1)^a x^{(2a+1)/2},
\]

it will yield a combinatorial proof of Jacobi’s Identity. The method of proof will depend on setting up a 1-1 correspondence between the partitions into even number of distinct parts and odd number of distinct parts of the type \((a, a - 1), (b - 1, b), (c, c)\); such a correspondence has to be 1-1 both ways. By means of simple operations one can change the parity of the number of parts except in the case when \((n, m)\) is of the type \((r(r + 1)/2, r(r - 1)/2)\), the parity of whose partition \((r, r - 1), (r - 1, r - 2), \ldots, (2, 1), (1, 0)\) cannot be changed and thus the excess in this case is \((-1)^r\) and \(0\) in other cases.

Gordon [1] has generalized Jacobi’s Identity such that there are five products on the left side, i.e.,

\[
\prod_{n=1}^{\infty} (1 - q^n)(1 - q^{2n-1}t)(1 - q^{2n-1}t^{-1})(1 - q^{4n-4}t^2)(1 - q^{4n-4}t^{-2})
\]

\[
= \sum_{\infty} q^{3n^2-2n}(t^{3n} + t^{-3n} - t^{3n-2} - t^{-3n+2}).
\]

Again put \(q^2 = xy, t^3 = x/y\) to obtain

\[
\prod_{n=1}^{\infty} (1 - x^n y^n)(1 - x^{n-1} y^{n-1})(1 - x^{2n-1} y^{2n-3})(1 - x^{2n-3} y^{2n-1})(1 - x^{n-1} y^n)
\]

\[
= \sum_{\infty} x^{(3n^2+n)/2} y^{(3n^2-5n)/2} + x^{(3n^2-5n)/2} y^{(3n^2+n)/2} - x^{(3n^2+n-2)/2} y^{(3n^2-5n+2)/2} - x^{(3n^2-5n+2)/2} y^{(3n^2+n-2)/2}.
\]

Let \(C(c, m)\) denote number of partitions of \((n, m)\) into vectors of the type \((a, a), (b, b - 1), (c - 1, c), (2d - 1, 2d - 3), (2e - 3, 2e - 1)\); thus the generating function is given by

\[
\prod_{n=1}^{\infty} \left(1 - x^n y^n\right) \left(1 - x^{n-1} y^{n-1}\right) \left(1 - x^{2n-1} y^{2n-3}\right) \left(1 - x^{2n-3} y^{2n-1}\right) \left(1 - x^{n-1} y^n\right)^{-1}
\]

\[
= \sum_{n,m=0}^{\infty} C(n, m) x^n y^m.
\]

Thus (1.6) yields the recurrence relation

\[
\sum C\left(n - \frac{3r^2 + r}{2}, m - \frac{3r^2 - 5r}{2}\right) + \sum C\left(n - \frac{3r^2 - 5r}{2}, m - \frac{3r^2 + r}{2}\right)
\]

\[
- \sum C\left(n - \frac{3r^2 + r - 2}{2}, m - \frac{3r^2 + 5r + 2}{2}\right)
\]

\[
- \sum C\left(n - \frac{3r^2 - 5r + 2}{2}, m - \frac{3r^2 - r - 2}{2}\right) = 0.
\]

Change \(x\) to \(-x\), \(y\) to \(-y\) in (1.5) to obtain
\[
\prod_{n=1}^{\infty} \left(1 - x^n y^n \right) \left(1 + x^{n-1} y^n \right) \left(1 - x^{2n-1} y^{2n-3} \right) \left(1 - x^{2n-3} y^{2n-1} \right)
\]

(1.8)

\[
= \sum_{n=0}^{\infty} (-1)^n x \left(\frac{3n^2+n}{2} y \left(\frac{3n^2-5n}{2} \right) + \sum_{n=0}^{\infty} (-1)^n \left(\frac{3n^2-5n}{2} y \left(\frac{3n^2+n}{2} \right) \right)
\]

If \(D(n, m) \) denotes the number of partitions of \((n, m)\) into parts of the type \((2d-1, 2d-3)\), \((2e-3, 2e-1)\). We obtain a relation between \(\alpha(n, m)\) and \(D(n, m)\) by writing (1.8) in the form

\[
\sum (-1)^\lambda (xy)^{\lambda(3\lambda+1)/2} \left\{ \sum_{n,m=0}^{\infty} \alpha(n, m) x^n y^m \right\}
\]

(1.9)

\[
= \left\{ \sum_{n,m=0}^{\infty} D(n, m) x^n y^m \right\} \left\{ \sum (-1)^n \left(\frac{3n^2+n}{2} y \left(\frac{3n^2-5n}{2} \right) \right)
\]

\[
+ (-1)^n \left(\frac{3n^2-5n}{2} y \left(\frac{3n^2+n}{2} \right) \right) + (-1)^{n+1} \left(\frac{3n^2-5n+2}{2} y \left(\frac{3n^2-n+2}{2} \right) \right)
\]

\[
+ (-1)^{n+1} \left(\frac{3n^2-5n+2}{2} y \left(\frac{3n^2-n+2}{2} \right) \right)
\]

and equating coefficients.

1.5 can also be written as

\[
\sum_{n=0}^{\infty} (-1)^n x_n (n+1) y_{n-1} = \left\{ \sum_{n,m=0}^{\infty} D(n, m) x^n y^m \right\}
\]

(1.10)

\[
\left\{ \sum x \left(\frac{3n^2+n}{2} y \left(\frac{3n^2-5n}{2} \right) \right) + \sum x \left(\frac{3n^2+5n}{2} y \left(\frac{3n^2+n}{2} \right) \right)
\]

\[
- \sum_{n=0}^{\infty} x \left(\frac{3n^2-n-2}{2} y \left(\frac{3n^2-5n+2}{2} \right) - \sum x \left(\frac{3n^2-5n+2}{2} y \left(\frac{3n^2+n+2}{2} \right) \right)
\]

\]

equating coefficients

\[
\sum D \left(n - \frac{3r^2 + r}{2}, m - \frac{3r^2 - 5r}{2} \right)
\]

(1.11)

\[
+ \sum D \left(n - \frac{3r^2 - 5r}{2}, m - \frac{3r^2 + r}{2} \right)
\]

\[
- \sum D \left(n - \frac{3r^2 - 5r + 2}{2}, m - \frac{3r^2 + r - 2}{2} \right)
\]

\[
- \sum D \left(n - \frac{3r^2 + r - 2}{2}, m - \frac{3r^2 - 5r + 2}{2} \right) = (-1)^r \text{ or 0}
\]

according as \((n, m)\) is of the type \((r(r+1)/2, r(r-1)/2)\) or not. The Jacobi Identity

\[
\prod_{n=1}^{\infty} \left(1 - x^n y^n \right) \left(1 + x^{n-1} y^n \right) \left(1 - x^n y^{n-1} \right) = \sum_{n,m=0}^{\infty} \alpha(n, m) x^n y^m
\]

(1.12)

\[
= \sum_{n=0}^{\infty} x \left(\frac{(n+1)/2, n(n-1)/2} \right)
\]

can be written as

\[
\left\{ \sum (-1)^\lambda (xy)^{\lambda(3\lambda+1)/2} \left\{ \sum_{n,m=0}^{\infty} \alpha(n, m) x^n y^m \right\}
ight\} x^{r+1/2} y^{r-1/2}
\]

(1.13)
Thus equating coefficients
\[
\sum_{\lambda} (-1)^{\lambda} \left(n - \lambda \left(\frac{3\lambda \pm 1}{2} \right), m - \lambda \left(\frac{3\lambda \pm 1}{2} \right) \right) = 1 \text{ or } 0
\]
according as \((n, m)\) is or is not of the type \((r(r + 1)/2, r(r - 1)/2)\).

In the case of the number of partitions of an integer we have the well-known result that the number of partitions of \(n\) into odd parts is equal to the number of partitions of \(n\) into distinct parts. We can prove the following generalization of this result for vector partitions.

Theorem II. The number of partitions of \((n_1, n_2, \ldots, n_s)\) into vectors with at least one component odd is equal to the number of partitions of \((n_1, n_2, \ldots, n_s)\) into distinct parts (vectors). Note, the same result holds if the parts are required to have non-zero components.

Proof. Denote the generating function of unrestricted vector partitions by
\[
f(x_1, x_2, \cdots, x_s) = \prod_{k_i \geq 0} (1 - x_1^{k_1} x_2^{k_2} \cdots x_s^{k_s})^{-1}
\]
and notice that the generating function for the number of partitions with at least one component odd is
\[
g(x_1, \cdots, x_s) \prod_{j_i \geq 0} \{(1 - x_1^{j_1} x_2^{j_2} \cdots x_s^{j_s})\}^{-1}
\]
where at least one \(j_i\) is odd.

This is connected with \(f(x_1, \cdots, x_s)\) by
\[
g(x_1, \cdots, x_s) = f(x_1, \cdots, x_s) \prod_{k_i \geq 0} (1 + x_1^{k_1} x_2^{k_2} \cdots x_s^{k_s})
\]
and this proves the result.

Let
\[
f(x) = \left\{ \prod_{n=1}^{\infty} (1 - x^n) \right\}^{-1},
\]
\[
g(x) = \frac{f(x)}{f(x^2)} = \sum_{n=0}^{\infty} x^{n(n+1)/2},
\]
\[
\theta(x) = \sum_{n=0}^{\infty} x^{n^2}.
\]

Gordon [1] has shown that
\[
F(x) = \frac{f(x^2)f(x^3)}{f(x^2)f(x^3)} = g(x) - 3xg(x^3),
\]
\[
G(x) = \frac{f(x^3)f(x^3)f(x^{15})}{f(x)f(x^4)f(x^8)^2} = \frac{3}{2} \theta(x^3) - \frac{1}{2} \theta(x).
\]
Thus
\[\int_0^1 x^{s^2-1} G(x) \, dx = \frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{9n^2 + s^2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2 + s^2} \]
\[= \frac{\pi}{2s} \coth \left(\frac{\pi s}{3} \right) - \frac{\pi}{2s} \coth \left(\frac{\pi s}{3} \right) \]
when \(s^2 \to 0 \)

Also
\[\int_0^1 x^{s^2} \{F(x) - 1\} \, dx = \sum_{n=1}^{\infty} \frac{1}{n^2 + n + s^2} - 3 \sum_{n=1}^{\infty} \frac{1}{9n^2 + 9n + 2} + s^2 \]
when \(s^2 \to 0 \).

We obtain
\[\int_0^1 \frac{x}{x} \{F(x) - 1\} \, dx = 2 \sum_{n=1}^{\infty} \frac{1}{n^2 + n} - 6 \sum_{n=1}^{\infty} \frac{1}{9n^2 + 9n + 2} \]
but \(\sum_{n=1}^{\infty} 1/(n^2 + n) = 1 \). Thus
\[\int_0^1 \frac{x}{x} \{F(x) - 1\} \, dx = 2 - 6 \sum_{n=1}^{\infty} \frac{1}{9n^2 + 9n + 2} \]

The author recently extended the table of values \(q_r(n, m) \) to \(n, m = 1(1) 49, r = 1(1) 98 \). These tables display the unique maxima property of \(P_r(n, m) \) the number of partitions of \((n, m) \) into exactly \(r \) parts with positive components. Szekeres [3] proved this result for \(P_r(n) \) the number of partitions of \(n \) into exactly \(r \) parts. The value of \(r = r_0 \) for which such a maxima occurs was also obtained by Szekeres. It seems reasonable to conjecture that \(P_r(n_1, n_2, \cdots, n_k) \) attains a unique maxima for fixed \(n_i \) and \(r \) varying, to locate the position of the maxima is still another problem, we hope these numerical results will be useful in establishing these results.

Here we list the values of \(q_r(n, m) \) and \(P_r(n, m) \). The number of partitions of \((n, m) \) into a most \(r \) parts and into exactly \(r \) parts with positive components respectively for \(n = m = 49, r = 1(1) 98 \). These calculations were performed on IBM7072 at the University of Arizona Computing Centre.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(q_r(49, 49))</th>
<th>(r)</th>
<th>(P_r(49, 49))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1250</td>
<td>2</td>
<td>1152</td>
</tr>
<tr>
<td>3</td>
<td>271250</td>
<td>3</td>
<td>12352</td>
</tr>
<tr>
<td>4</td>
<td>20456138</td>
<td>4</td>
<td>12540912</td>
</tr>
<tr>
<td>5</td>
<td>725382374</td>
<td>5</td>
<td>321383504</td>
</tr>
<tr>
<td>6</td>
<td>14378440981</td>
<td>6</td>
<td>4255450133</td>
</tr>
<tr>
<td>7</td>
<td>178477575068</td>
<td>7</td>
<td>32701533936</td>
</tr>
<tr>
<td>r</td>
<td>$q_r(49, 49)$</td>
<td>r</td>
<td>$P_r(49, 49)$</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
<td>---------------</td>
</tr>
<tr>
<td>8</td>
<td>150 48471 17166</td>
<td>8</td>
<td>15 87937 47277</td>
</tr>
<tr>
<td>9</td>
<td>916 77113 62366</td>
<td>9</td>
<td>52 08652 47085</td>
</tr>
<tr>
<td>10</td>
<td>4234 98219 30204</td>
<td>10</td>
<td>121 95462 10853</td>
</tr>
<tr>
<td>11</td>
<td>15473 71039 36275</td>
<td>11</td>
<td>213 70941 87417</td>
</tr>
<tr>
<td>12</td>
<td>46147 39455 92382</td>
<td>12</td>
<td>292 23660 88026</td>
</tr>
<tr>
<td>13</td>
<td>1 15673 58257</td>
<td>13</td>
<td>323 71388 03249</td>
</tr>
<tr>
<td>14</td>
<td>2 49776 71698 61341</td>
<td>14</td>
<td>300 40081 24568</td>
</tr>
<tr>
<td>15</td>
<td>4 74660 54906 63150</td>
<td>15</td>
<td>240 73125 68777</td>
</tr>
<tr>
<td>16</td>
<td>8 08754 69334 51823</td>
<td>16</td>
<td>171 08154 40544</td>
</tr>
<tr>
<td>17</td>
<td>12 55778 74241 16759</td>
<td>17</td>
<td>110 42127 59320</td>
</tr>
<tr>
<td>18</td>
<td>18 02318 70750 55031</td>
<td>18</td>
<td>66 04574 73208</td>
</tr>
<tr>
<td>19</td>
<td>24 20668 26439 28450</td>
<td>19</td>
<td>37 23585 89548</td>
</tr>
<tr>
<td>20</td>
<td>30 75237 65765 05129</td>
<td>20</td>
<td>20 06417 05470</td>
</tr>
<tr>
<td>21</td>
<td>37 29788 68910 41293</td>
<td>21</td>
<td>10 44661 76145</td>
</tr>
<tr>
<td>22</td>
<td>43 53218 32697 73604</td>
<td>22</td>
<td>5 29944 33056</td>
</tr>
<tr>
<td>23</td>
<td>49 22819 19823 33522</td>
<td>23</td>
<td>2 66151 05294</td>
</tr>
<tr>
<td>24</td>
<td>54 25075 38047 75435</td>
<td>24</td>
<td>1 28971 50552</td>
</tr>
<tr>
<td>25</td>
<td>58 54695 63056 88644</td>
<td>25</td>
<td>62293 44602</td>
</tr>
<tr>
<td>26</td>
<td>62 12736 16879 48138</td>
<td>26</td>
<td>29736 41660</td>
</tr>
<tr>
<td>27</td>
<td>65 04509 68770 92683</td>
<td>27</td>
<td>14038 75228</td>
</tr>
<tr>
<td>28</td>
<td>67 37716 16793 14191</td>
<td>28</td>
<td>6555 17660</td>
</tr>
<tr>
<td>29</td>
<td>69 20992 31811 86572</td>
<td>29</td>
<td>3026 58703</td>
</tr>
<tr>
<td>30</td>
<td>70 62911 29602 74915</td>
<td>30</td>
<td>1380 94202</td>
</tr>
<tr>
<td>31</td>
<td>71 71374 52344 73808</td>
<td>31</td>
<td>622 29879</td>
</tr>
<tr>
<td>32</td>
<td>72 53303 45626 50671</td>
<td>32</td>
<td>276 65859</td>
</tr>
<tr>
<td>33</td>
<td>73 14538 55406 77176</td>
<td>33</td>
<td>121 30780</td>
</tr>
<tr>
<td>34</td>
<td>73 59867 76299 09253</td>
<td>34</td>
<td>52 36586</td>
</tr>
<tr>
<td>35</td>
<td>73 93126 40369 25937</td>
<td>35</td>
<td>22 24235</td>
</tr>
<tr>
<td>36</td>
<td>74 17328 64517 83952</td>
<td>36</td>
<td>9 27622</td>
</tr>
<tr>
<td>37</td>
<td>74 34805 42592 48296</td>
<td>37</td>
<td>3 79693</td>
</tr>
<tr>
<td>38</td>
<td>74 47334 40431 53499</td>
<td>38</td>
<td>1 51958</td>
</tr>
<tr>
<td>39</td>
<td>74 56254 78400 31912</td>
<td>39</td>
<td>59521</td>
</tr>
<tr>
<td>40</td>
<td>74 62564 46471 11855</td>
<td>40</td>
<td>22652</td>
</tr>
<tr>
<td>41</td>
<td>74 66999 66842 87939</td>
<td>41</td>
<td>8406</td>
</tr>
<tr>
<td>42</td>
<td>74 70098 61871 08998</td>
<td>42</td>
<td>2998</td>
</tr>
<tr>
<td>43</td>
<td>74 72251 46591 09466</td>
<td>43</td>
<td>1043</td>
</tr>
<tr>
<td>44</td>
<td>74 73738 78617 19263</td>
<td>44</td>
<td>339</td>
</tr>
<tr>
<td>45</td>
<td>74 74760 84919 25277</td>
<td>45</td>
<td>109</td>
</tr>
<tr>
<td>46</td>
<td>74 75459 59174 26951</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td>47</td>
<td>74 75934 93051 42650</td>
<td>47</td>
<td>9</td>
</tr>
<tr>
<td>48</td>
<td>74 76256 74971 94430</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>74 76473 62747 36410</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use}$
The University of Arizona
Tucson, Arizona

