The following misprint originating on p. 157 of (a) has been reproduced in (b), (c), and (d).

For \(\int_1^{\infty} e^{-xt^n} dt = \frac{1}{x^{n+1}} \int_1^{\infty} e^{-t^n} dt \), read \(\int_1^{\infty} e^{-xt^n} dt = \frac{1}{x^{n+1}} \int_1^{\infty} e^{-t^n} dt \).

This correction is required also in (b), (c), and (d), as follows: (b), p. 157; (c), p. 36; and (d), p. 36.

J. R. PHILIP
Commonwealth Scientific and Industrial Research Organization,
Canberra, Australia.

CORRIGENDA

On p. 454, the element in the fifth row and second column of the corrector matrix corresponding to \(K = 5 \) should read \(-4032\) instead of \(-4042\).

A. C. R. NEWBERY

On p. 12, in section 3C, the continued fraction expression for \(G_a(x) \) should read

\[
G_a(x) = H_a(x) \left(\frac{a}{x} + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \cdots}}} \right)
\]

This typographical error does not affect either the single- or double-precision FORTRAN subroutines referred to in this paper.

On p. 14, in Fig. 2, for the double precision FORTRAN subroutine the “regions of \(x \)” should cover the range \(0 < x < 7, 7 \leq x \leq A_1 \) instead of \(0 < x < 1, 1 \leq x \leq A_1 \). This affects the double-precision subroutine output for \(G_a(x) \) only for \(a < 1, 1 \leq x < 1.35 \). A corrected version of this program has been submitted to SHARE.

JOHN R. B. WHITTLESEY