Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials


Authors: T. S. Shao, T. C. Chen and R. M. Frank
Journal: Math. Comp. 18 (1964), 598-616
MSC: Primary 65.05; Secondary 33.40
DOI: https://doi.org/10.1090/S0025-5718-1964-0166397-1
Erratum: Math. Comp. 26 (1972), 813.
MathSciNet review: 0166397
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] T. C. Chen, ``Polynomial orthogonality and integration quadratures,'' Rev. Mod. Phys., v. 35, 1963, p. 569-570.
  • [2] P. Concus, D. Cassat, G. Jaehnig & E. Melby, ``Tables for the evaluation of $ \int_0^\infty {{x^\beta }{e^{ - x}}f(x)dx} $ by Gauss-Laguerre quadrature,'' Math. Comp., v. 17, 1963, p. 245-256. MR 0158534 (28:1757)
  • [3] E. U. Condon & G. H. Shortley, The Theory of Atomic Spectra, University Press, Cambridge, 1953, p. 115.
  • [4] H. T. Davis, ``Review of 'Tables of Probability Functions','' MTAC, v. 1, 1943, p. 50.
  • [5] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953, Chapter X.
  • [6] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, Chapters 7, 8. MR 0075670 (17:788d)
  • [7] D. J. Hofsommer, ``Note on the computation of the zeros of functions satisfying a second order differential equation,'' MTAC, v. 12, 1958, p. 58-60. MR 0099752 (20:6190)
  • [8] P. M. Morse & H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, p. 785. MR 0059774 (15:583h)
  • [9] National Physical Laboratory, Modern Computing Methods, Her Majesty's Stationery Office, London, 1961, p. 59. MR 0117863 (22:8637)
  • [10] P. Rabinowitz & G. Weiss, ``Tables of abscissas and weights for numerical evaluation of integrals of the form $ \int_0^\infty {{e^{ - x}}{x^n}f(x)dx} $,'' MTAC, v. 13, 1959, p. 285-294. MR 0107992 (21:6713)
  • [11] A. H. Stroud & D. Secrest, ``Approximate integration formulas for certain spherically symmetric regions,'' Math. Comp., v. 17, 1963, p. 105-135. MR 0161473 (28:4677)
  • [12] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., v. 23, Amer. Math. Soc., Providence, R. I., 1959.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.05, 33.40

Retrieve articles in all journals with MSC: 65.05, 33.40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1964-0166397-1
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society