Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Padé approximation to the solution of the Ricatti equation


Author: Wyman Fair
Journal: Math. Comp. 18 (1964), 627-634
MSC: Primary 65.61
DOI: https://doi.org/10.1090/S0025-5718-1964-0169380-5
MathSciNet review: 0169380
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Yudell L. Luke, The Padé table and the 𝜏-method, J. Math. and Phys. 37 (1958), 110–127. MR 0099114, https://doi.org/10.1002/sapm1958371110
  • [2] Cornelius Lanczos, Applied analysis, Prentice Hall, Inc., Englewood Cliffs, N. J., 1956. MR 0084175
  • [3] Yudell L. Luke, Remarks on the 𝜏-method for the solution of linear differential equations with rational coefficients, J. Soc. Indust. Appl. Math. 3 (1955), 179–191. MR 0079817
  • [4] Alexey Nikolaevitch Khovanskii, The application of continued fractions and their generalizations to problems in approximation theory, Translated by Peter Wynn, P. Noordhoff N. V., Groningen, 1963. MR 0156126
  • [5] E. P. Merkes and W. T. Scott, Continued fraction solutions of the Riccati equation, J. Math. Anal. Appl. 4 (1962), 309–327. MR 0140753, https://doi.org/10.1016/0022-247X(62)90057-4
  • [6] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596
  • [7] E. Laguerre, ``Sur la réduction en fractions continues d'une function qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels,'' J. Math. Pures Appl. (4), v. 1, 1885, p. 135-165.
  • [8] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
  • [9] D. G. Randall, ``Supersonic flow past quasi-cyclindrical bodies of almost circular cross section,'' Aeronautical Research Council Reports and Memoranda No. 3067, November, 1955.
  • [10] Yudell L. Luke, Approximate inversion of a class of Laplace transforms applicable to supersonic flow problems, Quart. J. Mech. Appl. Math. 17 (1964), 91–103. MR 0162461, https://doi.org/10.1093/qjmam/17.1.91

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.61

Retrieve articles in all journals with MSC: 65.61


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1964-0169380-5
Article copyright: © Copyright 1964 American Mathematical Society