Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A method for the computation of the error function of a complex variable


Author: Otto Neall Strand
Journal: Math. Comp. 19 (1965), 127-129
MSC: Primary 65.25
DOI: https://doi.org/10.1090/S0025-5718-1965-0170456-8
MathSciNet review: 0170456
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a method of computing $ z \equiv \left( {2/\sqrt \pi } \right)\int_0^z {{e^{ - {u^2}}}du} $, where $ z$ is complex. It is shown that $ z \equiv 1 - {\text{erf }}z$ has no zeros in the right-hand half plane. An estimate of $ \vert{\text{erfc }}z\vert$ is derived.


References [Enhancements On Off] (What's this?)

  • [1] J. B. Rosser, "Theory and application of $ \int_0^z {{e^{ - {x^2}}}} dx$ and $ \int_0^z {{e^{ - {p^2}{y^2}}}dy\int_0^y {{e^{ - {x^2}}}dx} } $." Part 1, Methods of Computation, Mapleton House, Brooklyn, N. Y., 1948. MR 10, 267. MR 0027176 (10:267e)
  • [2] H. E. Salzer, "Formulas for calculating the error function of a complex variable," MTAC, v. 5, 1951, p. 67. MR 13, 989; 1140. MR 0048150 (13:989b)
  • [3] J. Kestin & L. N. Persen, "On the error function of a complex argument," Z. Angew. Math. Phys., v. 7, 1956, p. 33-40. MR 17, 968. MR 0076941 (17:968d)
  • [4] B. D. Fried & Samuel D. Conte, The Plasma Dispersion Function. The Hubert Transform of the Gaussian, Academic Press, New York, 1961. MR 24 #B1958. MR 0135916 (24:B1958)
  • [5] K. A. Karpov, Tables of the Function $ w(z) = {e^{ - {z^2}}}\int_0^z {{e^{{x^2}}}dx} $ in a Complex Region, Izdat. Akad. Nauk SSSR, Moscow, 1954. (Russian) MR 16, 749.
  • [6] V. N. Faddeeva & N. M. Terent'ev, Tables of Values of the Function $ w(z) = {e^{ - {z^2}}}\left( {1 + 2i{\pi ^{ - 1/2}}\int_0^z {{e^{{t^2}}}dt} } \right)$ for Complex Argument, (English translation), Mathematical Tables Series, v. 11, Pergamon Press, London, 1961. MR 22 #12740. MR 0122013 (22:12740)
  • [7] H. E. Salzer, op. cit., Formulas (6) and (7), p. 68.
  • [8] M. E. Munroe, Introduction to Measure and Integration, Addison-Wesley, Cambridge, Mass., 1953. MR 14, 734. MR 0053186 (14:734a)
  • [9] T. Laible, "Höhenkarte des Fehler-integrals," Z. Angew. Math. Phys., v. 2, 1951, p. 484-487. MR 13, 495. MR 0044894 (13:495a)
  • [10] William Feller, An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York, 1950, Lemma 2, p. 131 (p. 166 of 2nd ed.). MR 12, 424. MR 0088081 (19:466a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1965-0170456-8
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society