Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

On general iterative methods for the solutions of a class of nonlinear operator equations


Author: M. Z. Nashed
Journal: Math. Comp. 19 (1965), 14-24
MSC: Primary 65.10
MathSciNet review: 0179906
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Altman, A general method of steepest ortho-descent, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 645–651. MR 0137298
  • [2] Noël Gastinel, Procédé itératif pour la résolution numérique d’un système d’équations linéaires, C. R. Acad. Sci. Paris 246 (1958), 2571–2574 (French). MR 0094895
  • [3] L. M. Graves, "Riemann integration and Taylor's theorem in general analysis," Trans. Amer. Math. Soc., v. 29, 1927, p. 163-177.
  • [4] R. M. Hayes, Iterative methods of solving linear problems on Hilbert space, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 71–103. MR 0066563
  • [5] M. R. Hestenes, "Hilbert space methods in variation theory and numerical analysis," Proc. Internat. Congress of Mathematicians, v. 3, 1954, p. 229-236.
  • [6] A. S. Householder and F. L. Bauer, On certain iterative methods for solving linear systems, Numer. Math. 2 (1960), 55–59. MR 0116464
  • [7] L. V. Kantorovič and G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, Gosudarstv. Izdat. Fis.-Mat. Lit., Moscow, 1959 (Russian). MR 0119071
  • [8] M. A. Krasnosel′skiĭ and S. G. Kreĭn, An iteration process with minimal residuals, Mat. Sbornik N.S. 31(73) (1952), 315–334 (Russian). MR 0052885
  • [9] M. Kerner, "Die Differentiale in der allgemeinen Analysis," Ann. of Math., v. 34, 1933, p. 546-572.
  • [10] Cornelius Lanczos, Solution of systems of linear equations by minimized-iterations, J. Research Nat. Bur. Standards 49 (1952), 33–53. MR 0051583
  • [11] Yu. Lumiste, The method of steepest descent for nonlinear equations, Tartu. Gos. Univ. Trudy Estest.-Mat. Fak. 37 (1955), 106–113 (Russian, with Estonian summary). MR 0076444
  • [12] M. Z. Nashed, "Iterative methods for the solutions of nonlinear operator equations in Hilbert space," Ph. D. Dissertation, The University of Michigan, Ann Arbor, Mich., 1963.
  • [13] M. Z. Nashed, The convergence of the method of steepest descents for nonlinear equations with variational or quasi-variational operators, J. Math. Mech. 13 (1964), 765–794. MR 0166638
  • [14] W. V. Petryshyn, Direct and iterative methods for the solution of linear operator equations in Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 136–175. MR 0145651, 10.1090/S0002-9947-1962-0145651-8
  • [15] E. H. Rothe, Gradient mappings, Bull. Amer. Math. Soc. 59 (1953), 5–19. MR 0052681, 10.1090/S0002-9904-1953-09649-5
  • [16] Survey of numerical analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR 0135221
  • [17] M. M. Vaĭnberg, Variational Methods for Investigation of Non-Linear Operators, GITTL, Moscow, 1956. (Russian) MR 19, 567.
  • [18] M. M. Vaĭnberg, "On the convergence of the method of steepest descents for nonlinear equations," Dokl. Akad. Nauk SSSR, v. 130, 1960, p. 9-12. Soviet Math Dokl., v. 1, 1960, p. 1-4. MR 25 #751.
  • [19] M. M. Vaĭnberg, On the convergence of the process of steepest descent for nonlinear equations, Sibirsk. Mat. Ž. 2 (1961), 201–220 (Russian). MR 0126732

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.10

Retrieve articles in all journals with MSC: 65.10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1965-0179906-4
Article copyright: © Copyright 1965 American Mathematical Society