β may be obtained from Gershgorin’s theorem. A method of obtaining lower bounds for the least positive eigenvalue of a certain type matrix is discussed in [5].

Bettis Atomic Power Laboratory
Westinghouse Electric Corporation
West Mifflin, Pennsylvania

An Iterative Method for Computing the Generalized Inverse of an Arbitrary Matrix

By Adi Ben-Israel

Abstract. The iterative process, $X_{n+1} = X_n(2I - AX_n)$, for computing A^{-1}, is generalized to obtain the generalized inverse.

An iterative method for inverting a matrix, due to Schulz [1], is based on the convergence of the sequence of matrices, defined recursively by

$$X_{n+1} = X_n(2I - AX_n) \quad (n = 0, 1, \cdots)$$

(1)

to the inverse A^{-1} of A, whenever X_0 approximates A^{-1}. In this note the process (1) is generalized to yield a sequence of matrices converging to A^+, the generalized inverse of A [2].

Let A denote an $m \times n$ complex matrix, A^* its conjugate transpose, $P_{R(A)}$ the perpendicular projection of E^m on the range of A, $P_{R(A^*)}$ the perpendicular projection of E^* on the range of A^*, and A^+ the generalized inverse of A.

Theorem. The sequence of matrices defined by

$$X_{n+1} = X_n(2P_{R(A)} - AX_n) \quad (n = 0, 1, \cdots),$$

(2)

Received November 9, 1964.
where \(X_0 \) is an \(n \times m \) complex matrix satisfying

\[
\begin{align*}
(3) & \quad X_0 = A^* B_0 \quad \text{for some nonsingular} \ m \times m \ 	ext{matrix} \ B_0, \\
(4) & \quad X_0 = C_0 A^* \quad \text{for some nonsingular} \ n \times n \ 	ext{matrix} \ C_0, \\
(5) & \quad \| A X_0 - P_{R(A)} \| < 1, \\
(6) & \quad \| X_0 A - P_{R(A^*)} \| < 1,
\end{align*}
\]

converges to the generalized inverse \(A^+ \) of \(A \).

Proof. As in [3], the generalized inverse \(A^+ \) is characterized as the unique solution of the matrix equations,

\[
\begin{align*}
(7) & \quad A X = P_{R(A)}, \\
(8) & \quad X A = P_{R(A^*)}.
\end{align*}
\]

Thus it suffices to prove that the sequence (2) satisfies:

\[
\begin{align*}
(9) & \quad \lim_{n \to \infty} \| A X_n - P_{R(A)} \| = 0, \\
(10) & \quad \lim_{n \to \infty} \| X_n A - P_{R(A^*)} \| = 0.
\end{align*}
\]

First we verify from (2), (3), (4) that

\[
\begin{align*}
(11) & \quad X_n = A^* B_n \quad (n = 0, 1, \ldots) \\
(12) & \quad X_n = C_n A^* \quad \text{(where \(B_n, C_n \) are recursively computed as}
\end{align*}
\]

\[
\begin{align*}
B_{n+1} &= B_n (2 P_{R(A)} - A A^* B_n), \\
C_{n+1} &= C_n (2 P_{R(A^*)} - A^* A C_n),
\end{align*}
\]

but are not used in the sequel).

Now, from (2),

\[
(13) \quad P_{R(A)} - A X_{n+1} = (P_{R(A)} - A X_n) P_{R(A)} - A X_n (P_{R(A)} - A X_n);
\]

using (12), it follows that \(A X_n P_{R(A)} = P_{R(A)} A X_n \).

Therefore

\[
P_{R(A)} - A X_{n+1} = (P_{R(A)} - A X_n)^2
\]

and

\[
(14) \quad \| P_{R(A)} - A X_{n+1} \| \leq \| P_{R(A)} - A X_n \| \quad (n = 0, 1, \ldots),
\]

which, by (5), proves (9).

To prove (10) we write

\[
P_{R(A^*)} - X_{n+1} A = P_{R(A^*)} - X_n (2 P_{R(A)} - A X_n) A,
\]

which is rewritten, by (11), as

\[
P_{R(A^*)} - X_{n+1} A = P_{R(A^*)} - P_{R(A^*)} X_n A - X_n A + (X_n A)^2 = (P_{R(A^*)} - X_n A)^2.
\]

\([1]\| \cdot \| \) is a multiplicative matrix norm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus

\[
\| P_{R(A^*)} - X_{n+1}A \| \leq \| P_{R(A^*)} - X_nA \|^2 \quad (n = 0, 1, \ldots)
\]

which, by (6), proves (10).

Remarks. (i) Similarly, the sequence defined by

\[
X_{n+1} = (2P_{R(A^*)} - X_nA)X_n \quad (n = 0, 1, \ldots),
\]

with \(X_0 \) satisfying (3), (4), (5), (6), converges to \(A^+ \).

(ii) When \(A \) is nonsingular, both (2) and (16) reduce to the well-known process (1) due to Schulz [1], further studied by D"uck in [4].

(iii) Conditions (5), (6) cannot be weakened as shown by:

\[
A = \begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix}, \quad P_{R(A)} = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\]

and, taking

\[
X_0 = \begin{pmatrix}
1 & 1 \\
0 & 0
\end{pmatrix},
\]

which satisfies (3), (4) but \(\| AX_0 - P_{R(A)} \| = 1 \) under the sum-of-squares norm.

(iv) The practical significance of the process proposed here is impaired by the need for knowledge of \(P_{R(A)} \). In fact, the direct computation of \(A^+ \) requires little more than the computation of \(P_{R(A)} \) and of \(P_{R(A^*)} \), and not substantially more than the computation of one alone. For any matrix \(A \) can be expressed in the form \(A = FR^* \) where the columns of \(F \) are linearly independent as are those of \(R \). Then, as shown by Householder in [5],

\[
P_{R(A)} = F(F^*F)^{-1}F^*
\]

and

\[
P_{R(A^*)} = R(R^*R)^{-1}R^*.
\]

whereas

\[
A^+ = R(R^*R)^{-1}(F^*F)^{-1}F^*.
\]

While only one of the projections \(P_{R(A)} \), \(P_{R(A^*)} \) is needed for the computation by the method proposed here, both are needed for testing (5) and (6).

(v) In the case where \(A \) is of full rank, the method proposed here is applicable. For, if rank \(A = m \), \(P_{R(A)} = I_{m \times n} \) and (2) reads:

\[
X_{n+1} = X_n(2I - AX_n).
\]

In this case, \(A^+ = A^*(AA^*)^{-1} \) and, indeed, by (11), we verify that \(X_n = A^*B_n \), where \(B_n \) converges to \((AA^*)^{-1} \).

Similarly, if rank \(A = n \), \(P_{R(A^*)} = I_{n \times n} \) and (16) becomes

\[
X_{n+1} = (2I - X_nA)X_n.
\]

Example. Let

\[
A = \begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 1
\end{pmatrix}
\]
and take

\[X_0 = \frac{1}{2} A^* = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}. \]

Here, formula (17) is used to obtain:

\[X_1 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \]

\[X_2 = \frac{1}{16} \begin{pmatrix} 10 & 5 \\ 5 & 10 \\ -5 & 5 \end{pmatrix}, \]

\[X_3 = \frac{1}{256} \begin{pmatrix} 170 & 85 \\ 85 & 170 \\ -85 & 85 \end{pmatrix}, \]

etc.,

converging to:

\[A^+ = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}. \]

Technion, Israel Institute of Technology
Haifa, Israel

A Note on the Maximum Value of Determinants over the Complex Field

By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real field to the corresponding theorem over the complex field.

Theorem. Let \(D(n) \) be an \(n \)th order determinant with complex numbers as its entries. Then

\[
\text{Max } |D(n)| = \text{Max } |D(n)|.
\]

\(|a_{jk}| \leq K \quad |a_{jk}| = K \)

Received June 5, 1964. Revised December 8, 1964.