Symmetric integration rules for hypercubes. II. Rule projection and rule extension

Author:
J. N. Lyness

Journal:
Math. Comp. **19** (1965), 394-407

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5

MathSciNet review:
0201068

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A theory is described which facilitates the construction of highdimensional integration rules. It is found that, for large , an -dimensional integration rule of degree man be constructed requiring a number of function evaluations of order . In an example we construct a -dimensional rule of degree 9 which requires 52,701 function evaluations. The corresponding number for the product Gaussian is .

**[1]**C. F. Gauss, ``Methodus nova integralium valores per approximationem inveniendi,''*Comm. Soc. Reg. Sci. Göltingen*, 1816. ,**[2]**P. C. Hammer, O. J. Marlowe & A. H. Stroud, ``Numerical integration over Simplexes and cones,''*MTAC*, v. 10, 1956, pp. 130-137. MR**19**, 177. MR**0086389 (19:177e)****[3]**P. C. Hammer & A. H. Stroud, ``Numerical evaluation of multiple integrals. II,''*MTAC*, v. 12, 1958, pp. 272-280. MR**21**#970. MR**0102176 (21:970)****[4]**Z. Kopal, ``Numerical analysis,'' Wiley, New York and Chapman and Hall, London 1955. MR**17**, 1007. MR**0077213 (17:1007c)****[5]**J. N. Lyness, ``Symmetric integration rules for hypercubes. I. Error coefficients,''*Math. Comp.*, v. 19, 1965, pp. 260-276. MR**0201067 (34:952)****[6]**J. C. P. Miller, ``Numerical quadrature over a rectangular domain in two or more dimensions. Quadrature in several dimensions using special points,''*Math. Comp.*, v. 14, 1960, pp. 130-138. MR**22**#6075.**[7]**F. Stenger, ``*Numerical Integration in n Dimensions*,'' Thesis, University of Alberta, Canada, 1963.**[8]**A. H. Stroud, ``Numerical integration formulas of degree 3 for product regions and cones,''*Math. Comp.*, v. 15, 1961, pp. 143-150. MR**22**#12717. MR**0121990 (22:12717)****[9]**H. C. Thacher, Jr., ``Optimum quadrature formulas in dimensions,''*MTAC*, v. 11, 1957, pp. 189-194.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5

Article copyright:
© Copyright 1965
American Mathematical Society