Symmetric integration rules for hypercubes. II. Rule projection and rule extension

Author:
J. N. Lyness

Journal:
Math. Comp. **19** (1965), 394-407

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5

MathSciNet review:
0201068

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A theory is described which facilitates the construction of highdimensional integration rules. It is found that, for large , an -dimensional integration rule of degree man be constructed requiring a number of function evaluations of order . In an example we construct a -dimensional rule of degree 9 which requires 52,701 function evaluations. The corresponding number for the product Gaussian is .

**[1]**C. F. Gauss, ``Methodus nova integralium valores per approximationem inveniendi,''*Comm. Soc. Reg. Sci. Göltingen*, 1816. ,**[2]**P. C. Hammer, O. J. Marlowe, and A. H. Stroud,*Numerical integration over simplexes and cones*, Math. Tables Aids Comput.**10**(1956), 130–137. MR**0086389**, https://doi.org/10.1090/S0025-5718-1956-0086389-6**[3]**Preston C. Hammer and Arthur H. Stroud,*Numerical evaluation of multiple integrals. II*, Math. Tables Aids Comput.**12**(1958), 272–280. MR**0102176**, https://doi.org/10.1090/S0025-5718-1958-0102176-6**[4]**Zdeněk Kopal,*Numerical analysis. With emphasis on the application of numerical techniques to problems of infinitesimal calculus in single variable*, John Wiley & Sons, Inc., New York, 1955. MR**0077213****[5]**J. N. Lyness,*Symmetric integration rules for hypercubes. I. Error coefficients*, Math. Comp.**19**(1965), 260–276. MR**0201067**, https://doi.org/10.1090/S0025-5718-1965-0201067-3**[6]**J. C. P. Miller, ``Numerical quadrature over a rectangular domain in two or more dimensions. Quadrature in several dimensions using special points,''*Math. Comp.*, v. 14, 1960, pp. 130-138. MR**22**#6075.**[7]**F. Stenger, ``*Numerical Integration in n Dimensions*,'' Thesis, University of Alberta, Canada, 1963.**[8]**A. H. Stroud,*Numerical integration formulas of degree 3 for product regions and cones*, Math. Comp.**15**(1961), 143–150. MR**0121990**, https://doi.org/10.1090/S0025-5718-1961-0121990-4**[9]**H. C. Thacher, Jr., ``Optimum quadrature formulas in dimensions,''*MTAC*, v. 11, 1957, pp. 189-194.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5

Article copyright:
© Copyright 1965
American Mathematical Society