Tables of values of three infinite integrals
Authors:
ChihBing Ling and HsienChueh Wu
Journal:
Math. Comp. 19 (1965), 487494
Fulltext PDF Free Access
References 
Additional Information
 [1]
ChihBing
Ling, Tables of values of the integrals
∫^{∞}₀(𝑥^{𝑚}/𝑠𝑖𝑛ℎ^{𝑝}𝑥)𝑑𝑥
and
∫^{∞}₀(𝑥^{𝑚}/𝑐𝑜𝑠ℎ^{𝑝}𝑥)𝑑𝑥,
J. Math. Physics 31 (1952), 58–62. MR 0046126
(13,690a)
 [2]
C.B. Ling & C. W. Nelson, ``On evaluation of Howland's integrals,'' Annals of Academia Sinica, no. 2, part 2, 1955, pp. 4550.
 [3]
Carl
W. Nelson, A Fourier integral solution for the planestress problem
of a circular ring with concentrated radial loads, J. Appl. Mech.
18 (1951), 173–182. MR 0041666
(12,880c)
 [4]
C.
W. Nelson, New tables of Howland’s and
related integrals, Math. Comp. 15 (1961), 12–18. MR 0119442
(22 #10203), http://dx.doi.org/10.1090/S00255718196101194420
 [5]
J. W. L. Glaisher, ``Numerical values of the series ,'' Messenger of Math., v. 42, 1912, pp. 3549.
 [6]
J. W. L. Glaisher, ``Tables of etc. and etc. to 32 places of decimals,'' Quart. J. Pure and Appl. Math., v. 45, 1914, pp. 141152.
 [7]
H. T. Davis, Tables of Higher Mathematical Functions, Vol. 2, Principia Press, Bloomington, Indiana, 1955.
 [8]
J. Peters & J. Stein, ``Mathematical tables,'' Appendix of Peters' Tenplace Logarithmic Tables, Vol. 1, Ungar, New York, 1957.
 [9]
L.
S. Goddard, The accumulation of chance effects and the Gaussian
frequency distribution, Philos. Mag. (7) 36 (1945),
428–433. MR 0014620
(7,311a)
 [10]
L.
S. Goddard, The accumulation of chance effects and the Gaussian
frequency distribution, Philos. Mag. (7) 36 (1945),
428–433. MR 0014620
(7,311a)
 [11]
B. Butler, ``On the evaluation of by the trapezoidal rule,'' Amer. Math. Monthly, v. 67, 1960, pp. 566569.
 [12]
Kasaburô
Harumi, Shigetoshi
Katsura, and John
W. Wrench Jr., Values of
(2/𝜋)∫₀^{∞}(𝑠𝑖𝑛𝑡/𝑡)ⁿ𝑑𝑡,
Math. Comp. 14 (1960), 379. MR 0122010
(22 #12737), http://dx.doi.org/10.1090/S00255718196001220107
 [13]
R.
G. Medhurst and J.
H. Roberts, Evaluation of the integral
I_{n}(b)=2\over𝜋∫^{∞}_{0}(sinx\over x)^{n}
cos(bx)dx., Math. Comp. 19 (1965), 113–117. MR 0172446
(30 #2665), http://dx.doi.org/10.1090/S00255718196501724468
 [1]
 C.B. Ling, ``Tables of values of the integrals and ,'' J. Math, and Phys., v. 31, 1952, pp. 5862. MR 13, 690. (Two misprints are here noted. On p. 59, the subscript of in the last equation of (8) should be . Again, on p. 60, the exponent of 2 in the first equation of (9) should be .) MR 0046126 (13:690a)
 [2]
 C.B. Ling & C. W. Nelson, ``On evaluation of Howland's integrals,'' Annals of Academia Sinica, no. 2, part 2, 1955, pp. 4550.
 [3]
 C. W. Nelson, ``A Fourier integral solution for the planestress problem of a circular ring with concentrated radial loads,'' J. Appl. Mech., v. 18, 1951, pp. 173182. MR 12, 880. MR 0041666 (12:880c)
 [4]
 C. W. Nelson, ``New Tables of Howland's and related integrals,'' Math. Comp., v. 15, 1961, pp. 1218. MR 22 #10203. MR 0119442 (22:10203)
 [5]
 J. W. L. Glaisher, ``Numerical values of the series ,'' Messenger of Math., v. 42, 1912, pp. 3549.
 [6]
 J. W. L. Glaisher, ``Tables of etc. and etc. to 32 places of decimals,'' Quart. J. Pure and Appl. Math., v. 45, 1914, pp. 141152.
 [7]
 H. T. Davis, Tables of Higher Mathematical Functions, Vol. 2, Principia Press, Bloomington, Indiana, 1955.
 [8]
 J. Peters & J. Stein, ``Mathematical tables,'' Appendix of Peters' Tenplace Logarithmic Tables, Vol. 1, Ungar, New York, 1957.
 [9]
 A. H. R. Grimsey, ``On the accumulation of chance effects and the Gaussian frequency distribution,'' Philos. Mag., v. 36, 1945, pp. 294295. MR 1, 311. MR 0014620 (7:311a)
 [10]
 L. S. Goddard, ``The accumulation of chance effects and the Gaussian frequency distribution,'' Philos. Mag., v. 36, 1945, pp. 428433. MR 7, 311. MR 0014620 (7:311a)
 [11]
 B. Butler, ``On the evaluation of by the trapezoidal rule,'' Amer. Math. Monthly, v. 67, 1960, pp. 566569.
 [12]
 K. Harumi, S. Katsura & J. W. Wrench, Jr., ``Values of ,'' Math. Comp., v. 14, 1960, p. 379. MR 22 #12737. MR 0122010 (22:12737)
 [13]
 R. G. Medhurst & J. H. Roberts, ``Evaluation of the integral ,'' Math. Comp., v. 19, 1965, pp. 113117. MR 0172446 (30:2665)
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571865992471
PII:
S 00255718(65)992471
Article copyright:
© Copyright 1965
American Mathematical Society
