Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Tables of values of three infinite integrals


Authors: Chih-Bing Ling and Hsien-Chueh Wu
Journal: Math. Comp. 19 (1965), 487-494
DOI: https://doi.org/10.1090/S0025-5718-65-99247-1
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C.-B. Ling, ``Tables of values of the integrals $ \int_0^\infty {({x^m}} /{\sinh ^p}x)dx$ and $ \int_0^\infty {({x^m}/{{\cosh }^p}x)dx} $,'' J. Math, and Phys., v. 31, 1952, pp. 58-62. MR 13, 690. (Two misprints are here noted. On p. 59, the subscript of $ s'$ in the last equation of (8) should be $ m - 2p + 2r$. Again, on p. 60, the exponent of 2 in the first equation of (9) should be $ p + 1$.) MR 0046126 (13:690a)
  • [2] C.-B. Ling & C. W. Nelson, ``On evaluation of Howland's integrals,'' Annals of Academia Sinica, no. 2, part 2, 1955, pp. 45-50.
  • [3] C. W. Nelson, ``A Fourier integral solution for the plane-stress problem of a circular ring with concentrated radial loads,'' J. Appl. Mech., v. 18, 1951, pp. 173-182. MR 12, 880. MR 0041666 (12:880c)
  • [4] C. W. Nelson, ``New Tables of Howland's and related integrals,'' Math. Comp., v. 15, 1961, pp. 12-18. MR 22 #10203. MR 0119442 (22:10203)
  • [5] J. W. L. Glaisher, ``Numerical values of the series $ 1 - 1/{3^n} + 1/{5^n} - 1/{7^n} + 1/{9^n} - \cdot \cdot \cdot $ ,'' Messenger of Math., v. 42, 1912, pp. 35-49.
  • [6] J. W. L. Glaisher, ``Tables of $ 1 \pm {2^{ - n}} + {3^{ - n}} \pm {4^{ - n}} + $etc. and $ 1 + {3^{ - n}} + {5^{ - n}} + {7^{ - n}} + $ etc. to 32 places of decimals,'' Quart. J. Pure and Appl. Math., v. 45, 1914, pp. 141-152.
  • [7] H. T. Davis, Tables of Higher Mathematical Functions, Vol. 2, Principia Press, Bloomington, Indiana, 1955.
  • [8] J. Peters & J. Stein, ``Mathematical tables,'' Appendix of Peters' Ten-place Logarithmic Tables, Vol. 1, Ungar, New York, 1957.
  • [9] A. H. R. Grimsey, ``On the accumulation of chance effects and the Gaussian frequency distribution,'' Philos. Mag., v. 36, 1945, pp. 294-295. MR 1, 311. MR 0014620 (7:311a)
  • [10] L. S. Goddard, ``The accumulation of chance effects and the Gaussian frequency distribution,'' Philos. Mag., v. 36, 1945, pp. 428-433. MR 7, 311. MR 0014620 (7:311a)
  • [11] B. Butler, ``On the evaluation of $ \int_0^\infty {{{(\sin t/t)}^m}dt} $ by the trapezoidal rule,'' Amer. Math. Monthly, v. 67, 1960, pp. 566-569.
  • [12] K. Harumi, S. Katsura & J. W. Wrench, Jr., ``Values of $ (2/\pi )\int_0^\infty {{{(\sin t/t)}^n}dt} $,'' Math. Comp., v. 14, 1960, p. 379. MR 22 #12737. MR 0122010 (22:12737)
  • [13] R. G. Medhurst & J. H. Roberts, ``Evaluation of the integral $ (2/\pi )\int_0^\infty {{{(\sin t/t)}^m} \cdot \cos bt{\text{ }}dt} $ ,'' Math. Comp., v. 19, 1965, pp. 113-117. MR 0172446 (30:2665)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-65-99247-1
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society