and take

\[X_0 = \frac{1}{2} A^* = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}. \]

Here, formula (17) is used to obtain:

\[X_1 = \frac{1}{2} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}, \]

\[X_2 = \frac{1}{16} \begin{pmatrix} 10 & 5 \\ 5 & 10 \\ -5 & 5 \end{pmatrix}, \]

\[X_3 = \frac{1}{256} \begin{pmatrix} 170 & 85 \\ 85 & 170 \end{pmatrix}, \quad \text{etc.,} \]

converging to:

\[A^+ = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}. \]

Technion, Israel Institute of Technology
Haifa, Israel

A Note on the Maximum Value of Determinants over the Complex Field

By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real field to the corresponding theorem over the complex field.

Theorem. Let \(D(n) \) be an \(n \)th order determinant with complex numbers as its entries. Then

\[\text{Max } |D(n)| = \text{Max } |D(n)|. \]

Received June 5, 1964. Revised December 8, 1964.
In other words, \(D(n) \) is a function of \(n^2 \) variables \(a_{jk} \) which vary over the bounded and closed domain \(\bar{D} : \{ |a_{jk}| \leq K \} \); hence this function is bounded and attains its maximum value on the boundary of the domain \(\bar{D} \).

Proof. Let \(a_{jk} = r_{jk} e^{i\theta_{jk}} \) and \(A_{jk} = R_{jk} e^{i\phi_{jk}} \) be the co-factor of \(a_{jk} \), where \(K \geq r_{jk} \geq 0 \) and \(R_{jk} \geq 0 \). Then, expanding by the \(j \)th row, we have

\[
|D(n)| = \left| \sum_{k=1}^{n} a_{jk} A_{jk} \right| = \left| \sum_{k=1}^{n} r_{jk} R_{jk} e^{i(\theta_{jk} + \phi_{jk})} \right|
\]

\[
\leq \sum_{k=1}^{n} r_{jk} R_{jk} \leq \sum_{k=1}^{n} KR_{jk} = D'(n),
\]

where \(D'(n) \) is the \(n \)th order determinant whose entries are

\[
a'_{jk} = \begin{cases}
 a_{jk}, & \text{if } r_{jk} = K \text{ and } \theta_{jk} + \phi_{jk} = 0 \pmod{2\pi}, \\
 Ke^{-i\phi_{jk}}, & \text{if } r_{jk} < K \text{ or } \theta_{jk} + \phi_{jk} \neq 0 \pmod{2\pi}.
\end{cases}
\]

By applying the same process to the other rows, we obtain a determinant \(D^*(n) \) whose entries \(|a'_{jk}| = K \) and \(|D^*(n)| \geq |D(n)| \). Hence, \(\text{Max}_{|a_{jk}| \leq K} |D(n)| \leq \text{Max}_{|a_{jk}| \leq K} |D(n)| \); thus the proof of the theorem can be completed since the reverse inequality is trivial.

50 Mohigan Drive
Oneonta, New York

On the Numerical Solution of \(y' = f(x, y) \) **by a Class of Formulae Based on Rational Approximation**

By John D. Lambert and Brian Shaw

1. **Introduction.** Most finite difference formulae in common usage for the numerical solution of first-order differential equations are based on polynomial approximation. Two exceptions are the formulae based on exponential approximation proposed by Brock and Murray [1], and the formulae of Gautschi [2] which are derived from trigonometric polynomials. The use of rational functions as approximants has been studied by many authors, including Remes [3], Maehly [4] and Stoer [5], but the main concern of most of this work has been the direct approximation of a given function. Algorithms for interpolation based on rational functions have been proposed by Wynn [6], and methods for numerical integration and differentiation based on Padé approximation have been studied by Kopal [7]. It is the purpose of the present paper to derive a class of formulae, based on rational approximation, for the numerical solution of the initial value problem

\[
y' = f(x, y), \quad y(x_0) = y_0.
\]

The formulae proposed give exact results when the theoretical solution of (1) is a rational function of a certain degree, just as many of the classical difference formulae

Received December 10, 1964.