Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Rational approximations to generalized hypergeometric functions


Author: Jerry L. Fields
Journal: Math. Comp. 19 (1965), 606-624
MSC: Primary 33.20
DOI: https://doi.org/10.1090/S0025-5718-1965-0194620-7
MathSciNet review: 0194620
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. Bellman, "On approximate expressions for the exponential integral and the error function," J. Math and Phys., v. 30, 1952, pp. 226-231. MR 13, 690. MR 0046131 (13:690f)
  • [2] Y. L. Luke, "On economic representations of transcendental functions," J. Math. and Phys., v. 38, 1960, pp. 279-294. MR 22 #3829. MR 0112984 (22:3829)
  • [3] C. Lanczos, "Trigonometric interpolation of empirical and analytical functions," J. Math. and Phys., v. 17, 1938, pp. 123-199.
  • [4] C. Lanczos, Tables of Chebyshev Polynomials $ {S_n}(x)$ and $ {C_n}(x)$, National Bureau of Standards, AMS9, December, 1952.
  • [5] C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1956, MR 18, 823. MR 0084175 (18:823c)
  • [6] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, New York and Macmillan, New York, pp. 210-212, MR 6, 64. MR 1349110 (96i:33010)
  • [7] A. Erdélyi, et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953. MR 15, 419.
  • [8] E. W. Barnes, "The asymptotic expansion of integral functions defined by generalized hypergeometric series," Proc. London Math. Soc. (2), v. 5, 1907, pp. 59-116.
  • [9] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962, pp. 14-17. MR 25 #5198. MR 0141801 (25:5198)
  • [10] J. L. Fields & Y. L. Luke, "Asymptotic expansions of a class of hypergeometric polynomials with respect to the order," J. Math. Anal. Appl., v. 6, 1963, pp. 394-403. MR 26 #6446. MR 0148950 (26:6446)
  • [11] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, R. I., 1939; rev. ed., 1959. MR 1, 14; MR 21 #5029. MR 0106295 (21:5029)
  • [12] J. L. Fields & Y. L. Luke, "Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II," J. Math. Anal. Appl., v. 7, 1963, pp. 440-451. MR 28 #256. MR 0157015 (28:256)
  • [13] C. S. Meijer, "On the $ G$-function. I, II," Nederl. Akad. Wetensch. Proc., v. 49, 1946, p. 234 and pp. 344-346 = Indag. Math., v. 8, 1946, p. 133 and pp. 213-225. MR 8, 156. MR 0017452 (8:156a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33.20

Retrieve articles in all journals with MSC: 33.20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1965-0194620-7
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society