Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 19 (1965), 680-704
DOI: https://doi.org/10.1090/S0025-5718-65-99942-4
Corrigendum: Math. Comp. 27 (1973), 453.
Corrigendum: Math. Comp. 20 (1966), 344.
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Samuel M. Selby, Robert C. Weast, Robert S. Shankland & Charles D. Hodgman, Editors, Handbook of Mathematical Tables, Chemical Rubber Publishing Company, Cleveland, Ohio, 1962. (Reviewed in Math. Comp., v. 17, 1963, pp. 303-304, RMT 34.)
  • [2] Milton Abramowitz & Irene A. Stegun, Editors, Handbook of Mathematical Func- tions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964. (Reviewed in Math. Comp., v. 19, 1965, pp. 147-149, RMT 1.) MR 0167642 (29:4914)
  • [3] A. V. H. Masket & W. C. Rodgers, Tables of Solid Angles: I. Solid Angle Subtended by a Circular Disc; II. Solid Angle Subtended by the Lateral Surface of a Right Circular Cylinder, Office of Technical Services, Washington, D. C., 1962. (Reviewed in Math. Comp., v. 17, 1963, pp. 207-208, RMT 25.)
  • [1] Paul T. Bateman & Roger A. Horn, "A heuristic asymptotic formula concerning the distribution of prime numbers," Math. Comp., v. 16, 1962, pp. 363-367. MR 0148632 (26:6139)
  • [2] A. Schinzel, "A remark on a paper of Bateman and Horn," Math. Comp., v. 17, 1963, pp. 445-447. MR 0153647 (27:3609)
  • [3] Daniel Shanks, "A note on Gaussian twin primes," Math. Comp., v. 14, 1960, pp. 201- 203. MR 0111724 (22:2586)
  • [4] Daniel Shanks, "On the conjecture of Hardy and Littlewood concerning the number of primes of the form $ {n^2} + a$," Math. Comp., v. 14, 1960, pp. 321-332. MR 0120203 (22:10960)
  • [5] Daniel Shanks, "On numbers of the form $ {n^4} + 1$," Math. Comp., v. 15, 1961, pp. 186- 189; Corrigendum, ibid., v. 16, 1962, p. 513. MR 0120184 (22:10941)
  • [6] Daniel Shanks, "Supplementary data and remarks concerning a Hardy-Littlewood conjecture," Math. Comp., v. 17, 1963, pp. 188-193. MR 0159797 (28:3013)
  • [7] Daniel Shanks, "Polylogarithms, Dirichlet series, and certain constants," Math. Comp., v. 18, 1964, pp. 322-324. MR 0175275 (30:5460)
  • [8] Daniel Shanks & John W. Wrench, Jr., "The calculation of certain Dirichlet series," Math. Comp., v. 17, 1963, pp. 136-154; Corrigenda, ibid., p. 488. MR 0159796 (28:3012)
  • [9] Daniel Shanks & Larry P. Schmid, "Variations ona theorem of Landau," (toappear).
  • [10] W. A. Golubew, "Primzahlen der Form $ {x^2} + 3$," Österreich. Akad. Wiss. Math.-Nat. Kl., 1958, Nr. 11, pp. 168-172.
  • [1] John Brillhart, "On the factors of certain Mersenne numbers. II," Math. Comp., v. 18, 1964, pp. 87-92. MR 0159776 (28:2992)
  • [2] E. Karst, "Faktorenzerlegung Mersennescher Zahlen mittels programmgesteuerter Rechengeräte," Numer. Math., v. 3, 1961, pp. 79-86, esp. p. 80. MR 0120192 (22:10949)
  • [3] Donald B. Gillies, "Three new Mersenne primes and a statistical theory," Math. Comp., v. 18, 1964, pp. 93-97. MR 0159774 (28:2990)
  • [1] James Newman, The World of Mathematics, Vol. 1, Simon and Schuster, New York, 1956, pp. 197-198. MR 0081842 (18:453n)
  • [2] T. L. Heath, The Works of Archimedes, Dover (reprint), New York, undated, pp. xxxiv- xxxv, pp. 319-326. MR 2000800 (2005a:01003)
  • [1] J. A. Ward, "The down-hill method of solving $ f(z) = 0$," J. Assoc Comput. Mach., v. 4, 1957, pp. 148-150. MR 0092227 (19:1082b)
  • [1] D. J. Finney, R. Latscha, B. M. Bennett & P. Hsu, Tables for Testing Significance in a $ 2 \times 2$ Contingency Table, Cambridge University Press, New York, 1963. MR 0158448 (28:1671)
  • [1] K. P. Spies & J. R. Wait, Mode Calculations for VLF Propagation in the Earth-Ionosphere Waveguide, NBS Technical Note No. 114, U. S. Government Printing Office, Washington, D. C., 1961. MR 0129754 (23:B2790)
  • [2] J. C. P. Miller, The Airy Integral, giving Tables of Solutions of the Differential Equation $ y'' = xy$, British Association Mathematical Tables, Pt.-Vol. B, Cambridge University Press, Cambridge, 1946. MR 0018971 (8:353c)
  • [1] E. R. Hansen & M. L. Patrick, "Some relations and values for the generalized Riemann zeta function," Math. Comp., v. 16, 1962, pp. 265-274. MR 0147462 (26:4978)
  • [1] New York W. P. A. Mathematical Tables Project, Tables of the Probability Functions, Volume II, New York, 1942. Reissued with corrections as Tables of Normal Probability Functions, NBS Applied Mathematics Series, No. 23, U. S. Government Printing Office, Washington, D. C., 1953.
  • [2] E. S. Pearson & H. O. Hartley, Biometrika Tables for Statisticians, Volume I, Cambridge University Press, Cambridge, 1954. MR 0062983 (16:53e)
  • [1] H. T. Davis & Vera J. Fisher, Tables of the Mathematical Functions: Arithmetical Tables, Volume III, Principia Press, San Antonio, Texas, 1962. See Math. Comp., v. 17, 1963, pp. 459-461, RMT 68. MR 0142795 (26:364)
  • [2] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, second edition, Addison-Wesley Publishing Co., Reading, Massachusetts, 1962.
  • [3] H. T. Davis & Vera Fisher, A Bibliography and Index of Mathematical Tables, Northwestern University, Evanston, Illinois, 1949.
  • [4] MTAC, v. 10, 1956, p. 180, MTE 248.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-65-99942-4
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society