(b) With a slightly different algorithm i.e.
\[x = p^2 - q^2 - r^2, \]
\[y = 2pq, \]
\[z = 2pr. \]
We find for \(x = 495, y = 840, z = 448, \)
\[x^2 + y^2 + z^2 = 1073^2, \quad x^2 + y^2 = 975^2, \quad z^2 + y^2 = 952^2, \]
\(x^2 + z^2 \) not a square.

(c) The sets \((1008, 1100, 1155)\) and \((1008, 1100, 12075)\) have two numbers in common.

(d) There are several sets of \((x, y, z)\) which have one value in common e.g. \((2964, 9152, 9405)\), \((2964, 6160, 38475)\) and \((5643, 43680, 76076)\), \((5643, 14160, 21476)\).

Department of Mathematics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada

Some Designs for Maximal \((+1, -1)\)-Determinant of Order \(n = 2 \pmod{4}\)

By C. H. Yang

When \(n = 2 \pmod{4}\), Ehlich [1] has shown that

(i) the maximal absolute value \(\alpha_n\) of \(n\)th order determinant with entries \(\pm 1\) satisfies

\[\alpha_n^2 \leq 4(n - 2)^{n-2}(n - 1)^2 = \mu_n, \]

(ii) matrices \(M_n\) of the maximal \(n\)th order \((+1, -1)\)-determinant whose absolute value equals \(\mu_{n^{1/2}}\) exist for \(n \leq 38\), provided that \(\left((n - 1, -1)_p = 1\right)\) (Hilbert's symbol) for any prime \(p\), which is also equivalent to \(\text{any prime factor of squarefree part of } n - 1 \text{ is not congruent to 3 } \pmod{4}\)."

It is found that \(M_{42}, M_{46}\) also exist by Ehlich's method and such maximal matrices \(M_n\) are likely to exist for all \(n = 2 \pmod{4}\) if \((n - 1, -1)_p = 1\) for any prime \(p\). This means that for \(n < 200\), all such matrices are likely to be found except for \(n = 22, 34, 58, 70, 78, 94, 106, 130, 134, 142, 162, 166, 178,\) and 190.

The maximal matrix \(M_n\) such that

\[M_n M_n^T = \begin{pmatrix} 2 & n \\ \vdots & \vdots \\ n & 2 \end{pmatrix} \]

where \(P = \begin{pmatrix} \vdots & \vdots \\ 2 & n \end{pmatrix} \)

Received June 16, 1965.
and $M_n^T = \text{the transpose of } M_n$, can be constructed from the following (cf. Ehlich [1]):

$$M_n = \begin{pmatrix} A_1 & A_2 \\ -A_2^T & A_1^T \end{pmatrix},$$

where A_1, A_2 are circulant matrices of order $n/2$.

For $n = 42, 46$, the designs for the maximal matrices M_n are:

- $n = 42; \quad A_1 : \quad - - - - + + - - + - - - - + - + - ;$
 \hspace{1cm} A_2 : \quad - - + + + - - - - + - - - - - - - - ;$
- $n = 46; \quad A_1 : \quad - - - - + + - - + - - - - + - - - ;$
 \hspace{1cm} A_2 : \quad - - + + - - - - + - - - - - - - - ;$

where $-$ stands for -1, $+$ for $+1$.

Another design for $n = 38$ is found as follows:

- $A_1 : \quad - - - + - - - - - - - - - - - - - - ;$
- $A_2 : \quad - - - - + - - - - - - - - - - - - - - ;$

For $n = 50$, the maximal matrix M_n can be constructed by taking $A_1 = A_2 = \text{the matrix of Raghavarao [3]},$ without circulancy.

As noted in the design of above maximal matrices, the numbers n_1 and n_2 of -1's respectively in each row of A_1 and A_2 can not be arbitrary. For example, when $n = 38; n_1, n_2$ must be either 6 or 7, provided $n_1, n_2 < n/4$. Similarly, when $n = 42; n_1, n_2$ must be either 6 or 10; when $n = 46; \text{either 7 or 10}$. For $54 \leq n < 200$, the following table of n_1 and n_2 is helpful to construct the maximal matrices. ($n_1, n_2 < n/4$)

| n | 54 | 62 | 66 | 74 | 82 | 86 | 90 | 98 | 102 | 110 | 114 | 118 | 122 | 126 |
|-----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| n_1 or n_2 | 9 | 10 | 12 (11) | 13 | 16 | 16 (15) | 16 | 18 | 20 | 21 | 21 | 22 | 25 | 25 (24) |

<table>
<thead>
<tr>
<th>n</th>
<th>138</th>
<th>146</th>
<th>150</th>
<th>154</th>
<th>158</th>
<th>170</th>
<th>174</th>
<th>182</th>
<th>186</th>
<th>194</th>
<th>198</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1 or n_2</td>
<td>27</td>
<td>30</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>34 (36)</td>
<td>36</td>
<td>36</td>
<td>38 (37)</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>n_1 or n_2</td>
<td>31</td>
<td>31</td>
<td>36</td>
<td>34</td>
<td>37</td>
<td>39 (36)</td>
<td>38</td>
<td>45</td>
<td>42 (45)</td>
<td>46</td>
<td>43</td>
</tr>
</tbody>
</table>

4 Gunnison Park Boulevard
Oneonta, New York