Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical calculation of integrals with strongly oscillating integrand


Authors: A. I. van de Vooren and H. J. van Linde
Journal: Math. Comp. 20 (1966), 232-245
MSC: Primary 65.55; Secondary 65.25
DOI: https://doi.org/10.1090/S0025-5718-1966-0192644-8
MathSciNet review: 0192644
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a method is presented for evaluating

$\displaystyle \int_0^N {f(x){e^{iwx}}} dx{\text{ where }}\omega N = p \cdot 2\pi ,{\text{ }}p{\text{ integer}}{\text{.}}$

The idea is to approximate $ f(x)$ instead of the whole integrand by aid of polynomials. The Romberg-Stiefel algorithm has been extended to this case. The new method is complementary to the usual Romberg-Stiefel algorithm in the sense that it is more advantageous for larger values of $ \omega $. An expression for the remainder term is also included. Results for the real part are exact if $ f(x)$ is of at most 7th degree and for the imaginary part if $ f(x)$ is of at most 8th degree.


References [Enhancements On Off] (What's this?)

  • [1] E. Stiefel, Einführung in die numerische Mathematik, Teubner, Stuttgart, 1961, pp. 131-137. MR 22 #12686.
  • [2] L. Fox, Numerical Solution of Ordinary and Partial Differential Equations, Pergamon, Oxford, 1962. MR 26 #4488. MR 0146969 (26:4488)
  • [3] L. N. G. Filon, "On a quadrature formula for trigonometric integrals," Proc. Roy. Soc. Edinburgh Sect. A, v. 49, 1929, pp. 38-47.
  • [4] Y. L. Luke, "On the computation of oscillatory integrals," Proc. Cambridge Philos. Soc., v. 50, 1954, pp. 269-277. MR 15, 992. MR 0062518 (15:992b)
  • [5] H. Hurwitz & P. F. Zweifel, "Numerical quadrature of Fourier transform integrals," MTAC, v. 10, 1956, pp. 142-149. MR 18, 337. MR 0080994 (18:337h)
  • [6] H. Hurwitz, R. A. Pfeiffer & P. F. Zweifel, "Numerical quadrature of Fourier transform integrals. II," MTAC, v. 13, 1959, pp. 87-90. MR 21 #5283. MR 0106552 (21:5283)
  • [7] A. Sänger, "On numerical quadrature of Fourier transforms," J. Math. Anal. Appl., v. 8, 1964, pp. 1-3. MR 28 #720. MR 0157487 (28:720)
  • [8] W. E. Milne, Numerical Calculus, Princeton Univ. Press, Princeton, N. J., 1949. MR 10, 483. MR 0028671 (10:483g)
  • [9] A. I. van de Vooren & H. J. van Linde, "Numerical calculation of integrals with strongly oscillating integrand," Report TW-22, Math. Inst., University of Groningen, 1965.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.55, 65.25

Retrieve articles in all journals with MSC: 65.55, 65.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1966-0192644-8
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society