A division algebra for sequences defined on all the integers

Author:
D. H. Moore

Journal:
Math. Comp. **20** (1966), 311-317

MSC:
Primary 44.40

DOI:
https://doi.org/10.1090/S0025-5718-1966-0196433-X

MathSciNet review:
0196433

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Louis Brand, "A division algebra for sequences and its associated operational calculus,"*Amer. Math. Monthly*, v. 71, 1964, pp. 719-728. MR**29**#5069. MR**0167802 (29:5069)****[2]**D. H. Moore, "Convolution products and quotients of sequences. An operational calculus for sequences and for pulsed-data and digital systems," Dissertation, Univ. of Calif., Los Angeles, 1962.**[3]**D. H. Moore, "Convolution products and quotients and algebraic derivatives of sequences,"*Amer. Math. Monthly*, v. 69, 1962, pp. 132-138. MR**25**#402. MR**0136942 (25:402)****[4]**George Boole,*Calculus of Finite Differences*, 4th ed., Chelsea, New York, 1957. MR**20**#1124. MR**0115025 (22:5830a)****[5]**John Aseltine,*Transform Method in Linear System Analysis*, McGraw-Hill Electrical and Electronics Engineering Series, McGraw-Hill, New York, 1958. MR**21**#6201. MR**0107476 (21:6201)****[6]**J. F. Traub, "Generalized sequences with applications to the discrete calculus,"*Math. of Comp.*, v. 19, 1965, pp. 177-200. MR**0179489 (31:3737)****[7]**J. Mikusiński,*Operational Calculus*, International Series of Monographs on Pure and Applied Mathematics, Vol. 8, Pergamon Press, New York, and Państwowe Wydawnictwo Naukowe, Warsaw, 1959. MR**21**#4333. MR**0105594 (21:4333)**

Retrieve articles in *Mathematics of Computation*
with MSC:
44.40

Retrieve articles in all journals with MSC: 44.40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1966-0196433-X

Article copyright:
© Copyright 1966
American Mathematical Society