Economical Evaluation of Runge-Kutta Formulae

By David J. Fyfe

1. Gill [1] and Blum [2] have produced special versions of the Runge-Kutta fourth order method for the solution of N simultaneous first order differential equations which require $3N + P$ storage locations against the normal $4N + P$, where P is the storage required by the program. It is shown below that it is possible to arrange all such methods in a form which requires $3N + P$ storage locations. Gill’s method for reducing round off error is also extended.

2. The Runge-Kutta fourth order methods for solving the N equations

$$y_i' = f_i(x, y_1, y_2, \ldots, y_N),$$

$$y_i(x_0) = y_{i0}, \quad i = 1, 2, \ldots, N,$$

are usually written in the form ($y_{ij} = y_i(x_j)$)

$$y_{i+1} = y_{ij} + ak_{i0} + bk_{i1} + ck_{i2} + dk_{i3},$$

where

$$k_{i0} = h f_i(x_j, y_{1j}, y_{2j}, \ldots, y_{Nj}),$$

$$k_{i1} = h f_i(x_j + mh, y_{1j} + mk_{i0}, \ldots, y_{Nj} + mk_{N0}),$$

$$k_{i2} = h f_i(x_j + nh, y_{1j} + (n - r)k_{i0} + rk_{i1}, \ldots, y_{Nj} + (n - r)k_{N0} + rk_{N1}),$$

$$k_{i3} = h f_i(x_j + ph, y_{1j} + (p - s - t)k_{i0} + sk_{i1} + tk_{i2}, \ldots, +y_{Nj} + (p - s - t)k_{N0} + sk_{N1} + tk_{N2}),$$

$$i = 1, 2, \ldots, N.$$

The $a, b, c, d, m, n, p, r, s, t$ satisfy the following eight equations

$$a + b + c + d = 1,$$

$$bm + cn + dp = \frac{1}{2},$$

$$bm^2 + cn^2 + dp^2 = \frac{1}{3},$$

$$cmr + dnt + dms = \frac{1}{6},$$

$$bm^3 + cn^3 + dp^3 = \frac{1}{4},$$

$$c m r + d n t p + d m s p = \frac{1}{5},$$

$$cm^2 r + d n^2 t + d m^2 s = \frac{1}{12},$$

$$d m r t = \frac{1}{24}.$$

The computation with the formulae arranged in this form requires $4N + P$ storage.
locations. It is now shown that by splitting the computation into four stages it is possible to obtain the solution by storing $3N$ quantities at each stage.

Let
\[
Z_{i0} = y_{ij},
\]
\[
Z_{i1} = y_{ij} + mk_{i0},
\]
\[
Z_{i2} = y_{ij} + (n - r)k_{i0} + rk_{i1},
\]
\[
Z_{i3} = y_{ij} + (p - s - t)k_{i0} + sk_{i1} + tk_{i2},
\]
\[
y_{ij+1} = Z_{i4} = y_{ij} + ak_{i0} + bk_{i1} + ck_{i2} + dk_{i3}.
\]

Expressing each Z_i in terms of the previous value we obtain
\[
Z_{i0} = y_{ij},
\]
\[
Z_{i1} = Z_{i0} + mk_{i0},
\]
\[
Z_{i2} = Z_{i1} + (n - m + r)k_{i0} + rk_{i1},
\]
\[
Z_{i3} = Z_{i2} + (p - s - t - n + r)k_{i0} + (s - r)k_{i1} + tk_{i2},
\]
\[
Z_{i4} = Z_{i3} + (a - p + s + t)k_{i0} + (b - s)k_{i1} + (c - t)k_{i2} + dk_{i3}.
\]

Let $P_{i0} = k_{i0} = hfi(x_j, Z_{i0}, \cdots, Z_{N0})$, then $Z_{i1} = Z_{i0} + mP_{i0}$.

Let $Q_{i1} = P_{i0}$, and $P_{i1} = k_{i1} = hfi(x_j + mh, Z_{i1}, \cdots, Z_{N1})$, then $Z_{i2} = Z_{i1} + (n - m - r)Q_{i1} + rP_{i1}$.

The P_{i1} and Z_{i2} are stored in the locations occupied by P_{i0} and Z_{i1} as the latter are no longer required.

Let $Q_{i2} = Q_{i1} + AP_{i1}$, and $P_{i2} = k_{i2} + BP_{i1}$. If A and B are chosen so that
\[
(p - s - t - n + r)A + tB = (s - r),
\]
then $Z_{i3} = Z_{i2} + (p - s - t - n + r)Q_{i2} + tP_{i2}$. Again the new P_i, Q_i, Z_i replace the previous triplet.

Let $Q_{i3} = Q_{i2}$, and $P_{i3} = k_{i3} + CP_{i2}$. If A, B, C are chosen so that
\[
(a - p + s + t)A + dBC = (b - s)
\]
and
\[
dC = (c - t)
\]
then $Z_{i4} = Z_{i3} + (a - p + s + t)Q_{i3} + dP_{i3}$. In the above equations each triplet Z, P, Q is expressed in terms of the previous triplet only and so only $3N$ storage locations are required.

Solving (3), (4) and (5) we obtain
\[
A = \frac{(c - t)(s - r) - t(b - s)}{(c - t)(p - s - t - n + r) - t(a - p + s + t)},
\]
\[
B = \frac{s - r}{t} - \frac{(p - s - t - n + r)}{t} A,
\]
\[
C = \frac{c - t}{d},
\]

$(d = 0$ or $t = 0$ is impossible from (2)).
Thus if the equations are arranged as follows only $3N + P$ storage locations are required:

\[
\begin{align*}
Z_{i0} &= y_{ij}, \\
P_{i0} &= hf_i(x_j, Z_{i0}, \ldots, Z_{N0}); \\
Z_{i1} &= Z_{i0} + mP_{i0}, \\
Q_{i1} &= P_{i0}, \\
P_{i1} &= hf_i(x_j + mh, Z_{i1}, \ldots, Z_{N1}); \\
Z_{i2} &= Z_{i1} + (n - m - r)Q_{i1} + rP_{i1}, \\
Q_{i2} &= Q_{i1} + AP_{i1}, \\
P_{i2} &= hf_i(x_j + nh, Z_{i2}, \ldots, Z_{N2}) + BP_{i1}; \\
Z_{i3} &= Z_{i2} + (p - s - t - n + r)Q_{i2} + tP_{i2}, \\
Q_{i3} &= Q_{i2}, \\
P_{i3} &= hf_i(x_j + ph, Z_{i3}, \ldots, Z_{N3}) + CP_{i2}; \\
y_{i,j+1} &= Z_{i4} = Z_{i3} + (a - p + s + t)Q_{i3} + dP_{i3}.
\end{align*}
\]

(6)

3. Gill's method of reducing round-off error is now applied to Equations (6). In this method artificial round-off errors are introduced to minimize the actual round-off error. This is possible because the quantities P_i and Q_i are of order h and so in general can be stored to a higher degree of accuracy than the Z_i. This is done automatically if floating point arithmetic is used. In the first equation of each triplet in Equations (6) (i.e. the calculation of Z_i) we are concerned with adding quantities of order h to quantities of order 1. We will show below that, by introducing appropriate modifications in the terms of order $h(Q_i)$, it is possible to compensate almost exactly for the errors in Z_i. If we let the round-off error in the calculation of P_{i0}, Z_{i1}, \ldots, be $e(P_{i0})$, $e(Z_{i1})$, \ldots, which we suppose are easily available when these quantities are computed, the total round-off error accumulated in one step is

\[
E_i = e(Z_{i1}) + e(Z_{i2}) + e(Z_{i3}) + e(Z_{i4})
\]

(7) \[
+ ae(P_{i0}) + be(P_{i1}) + ce(P_{i2}) + de(P_{i3})
+ (a - m)e(Q_{i1}) + (a - n + r)e(Q_{i2}) + (a - p + s + t)e(Q_{i3}).
\]

We now introduce modifications $e'(Q_i)$ in the Q_i to compensate almost exactly for the errors in Z_i i.e. put

\[
\begin{align*}
(a - m)e'(Q_{i1}) &= -e(Z_{i1}), \\
(a - n + r)e'(Q_{i2}) &= -e(Z_{i2}), \\
(a - p + s + t)e'(Q_{i3}) &= -e(Z_{i3}).
\end{align*}
\]

(8)

In order to introduce these modifications we define quantities R_{i1}, R_{i2}, R_{i3} as
ECONOMICAL EVALUATION OF RUNGE-KUTTA FORMULAE 395

follows:

\[R_{11} = Z_{11} - Z_{i0} = mP_{i0} + e(R_{11}), \]

(9)

\[R_{12} = Z_{12} - Z_{11} = (n - m - r)Q_{11} + rP_{11} + e(R_{12}), \]

\[R_{13} = Z_{13} - Z_{12} = (p - s - t - n + r)Q_{12} + tP_{12} + e(R_{13}), \]

where \(e(R_{ij}) = e(Z_{ij}), j = 1, 2, 3. \)

We thus introduce \(e'(Q_{11}), e'(Q_{12}), e'(Q_{13}) \) such that

\[(a - m)e'(Q_{11}) = -e(R_{11}) = -(R_{11} - mP_{i0}), \]

\[(a - n + r)e'(Q_{12}) = -e(R_{12}) = -(R_{12} - (n - m - r)Q_{11} - rP_{11}), \]

\[(a - p + s + t)e'(Q_{13}) = -e(R_{13}) = -(R_{13} - (p - s - t - n + r)Q_{12} - tP_{12}) \]

which almost exactly compensate for the errors in \(Z_{11}, Z_{12}, Z_{13} \). Therefore, redefine \(Q_{11}, Q_{12}, Q_{13} \) as follows: \(Q_{ij} = Q_{ij} + e'(Q_{ij}), j = 1, 2, 3. \)

Making the above change requires only one additional storage location as the \(R_i \)'s are used temporarily in the formation of the \(Z_i \) and \(Q_i' \). The primes on \(Q_i \) will now be dropped for convenience. The only large error term remaining is \(e(Z_{14}) \). In order to eliminate this introduce \(Q_{i0}, R_{14} \) and \(Q_{14} \), where \(Q_{14} \) at one step becomes \(Q_{i0} \) at the next.

Define:

\[R_{14} = Z_{14} - Z_{13} = (a - p + s + t)Q_{13} + dP_{13} + e(R_{14}), \]

\[Q_{14} = e(R_{14}) = R_{14} - (a - p + s + t)Q_{13} - dP_{13}, \]

\[Q_{i0} = [Q_{14}]_{z=x_j}. \]

\(Q_{14} \) is the round-off error in \(Z_{14} \).

Since \(Z_{10} = y_{ij} \), the best available estimate would appear to be \([Z_{14} - Q_{14}]_{z=x_j}\) which gives

\[R_{11} = Z_{11} - y_{ij} = Z_{11} - Z_{i0} + Q_{i0}. \]

Thus we redefine \(R_{11} \) and consequently \(Q_{i1} \) as follows:

\[R_{11} = mP_{i0} - Q_{i0} + e(R_{11}) \]

and

\[Q_{i1} = \left(\frac{a}{a - m}\right)P_{i0} - \frac{1}{a - m}Q_{i0} - \frac{1}{a - m}R_{11}. \]

However, it will now be shown, following Gill [1], that it is slightly better to let
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Coefficients of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(e(R_{i0}))</td>
</tr>
<tr>
<td>(R_{i0})</td>
<td>1</td>
</tr>
<tr>
<td>(Z_{i0})</td>
<td>1</td>
</tr>
<tr>
<td>(Q_{i0})</td>
<td>1</td>
</tr>
<tr>
<td>(R_{i1})</td>
<td>(-\frac{w}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Z_{i1})</td>
<td>(\frac{1}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Q_{i1})</td>
<td>(-\frac{1}{a-m}(1-w))</td>
</tr>
<tr>
<td>(R_{i2})</td>
<td>(-\frac{n-m-r}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Z_{i2})</td>
<td>(\frac{a-n+r}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Q_{i2})</td>
<td>(-\frac{1}{a-m}(1-w))</td>
</tr>
<tr>
<td>(R_{i3})</td>
<td>(-\frac{p-s-t-n+r}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Z_{i3})</td>
<td>(\frac{a-p+s+t}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Q_{i3})</td>
<td>(-\frac{1}{a-m}(1-w))</td>
</tr>
<tr>
<td>(R_{i4})</td>
<td>(-\frac{a-p+s+t}{a-m}(1-w))</td>
</tr>
<tr>
<td>(Z_{i4})</td>
<td>0</td>
</tr>
<tr>
<td>(Q_{i4})</td>
<td>0</td>
</tr>
</tbody>
</table>
\[R_{i1} = mP_{i0} - wQ_{i0} + e(R_{i1}), \]

where

\[w = 1 + \frac{2a(a - m)}{2a(1 - a) - 1 + 2(cr + ds + dt)}. \]

Table 1 shows the errors in each quantity \(R_i, Z_i, Q_i \) within one step of errors \(e(R_{i0}), e(R_{i1}), e(R_{i2}), e(R_{i3}) \), where \(R_{i0} = [R_{i}]_{x=xj} \). The error in \(y_{i+j} \) due to errors in the \(P_i \) caused by errors in \(Z_i \) is given by

\[E(y_{i+j+1}) = aE(P_{i0}) + bE(P_{i1}) + cE(P_{i2}) + dE(P_{i3}), \]

where \(E(P_{i0}) \) represents the total error in \(P_{i0} \) etc. If we assume that the partial derivatives \(\frac{\partial f_i}{\partial y_k}, k = 1, 2, \ldots, N \), are constant over one step

\[E(y_{i+j+1}) = h \sum_{k=1}^{N} \frac{\partial f_i}{\partial y_k} \{aE(Z_{k0}) + bE(Z_{k1}) + cE(Z_{k2}) + dE(Z_{k3})\}, \]

where

\[S = a + (1 - w) \left[b + c \left(\frac{a - n + r}{a - m}\right) + d \left(\frac{a - p + s + t}{a - m}\right)\right], \]
\[T = b + c \left(\frac{a - n + r}{a - m}\right) + d \left(\frac{a - p + s + t}{a - m}\right), \]
\[U = c + d \left(\frac{a - p + s + t}{a - n + r}\right), \]
\[V = d. \]

Assuming the \(e(R_i) \) are randomly distributed between \(-\frac{1}{2}\) unit and \(+\frac{1}{2}\) unit, the standard deviation in \(y_{i+j+1} \) from this source is a minimum if \(S = 0 \), which leads to the optimum value

\[w = 1 + \frac{a(a - m)}{b(a - m) + c(a - n + r) + d(a - p + s + t)}, \]
\[= 1 + \frac{2a(a - m)}{2a(1 - a) - 1 + 2(cr + ds + dt)} \quad \text{(from Equation (2))}. \]

The final formulae are therefore:

\[Z_{i0} = y_{ij}, \quad Q_{i0} = [Q_{i}]_{x=xj}, \]
\[P_{i0} = hf_i(x_j, Z_{i0}, \ldots, Z_{N0}); \]
\[R_{i1} = mP_{i0} - wQ_{i0} + e(R_{i1}), \]
\[Z_{i1} = Z_{i0} + R_{i1}, \]
\[Q_{i1} = \left(\frac{a}{a - m}\right)P_{i0} - \frac{1}{a - m}Q_{i0} - \frac{1}{a - m}R_{i1}, \]
\[P_{i1} = hf_i(x_j + mh, Z_{i1}, \ldots, Z_{N1}); \]
\[R_{i2} = (n - m - r)Q_{i1} + rP_{i1} + e(R_{i2}), \]
\[Z_{i2} = Z_{i1} + R_{i2}, \]
\[Q_{i2} = \left(\frac{a - m}{a - n + r} \right) Q_{i1} + \left(A + \frac{r}{a - n + r} \right) P_{i1} - \left(\frac{1}{a - n + r} \right) R_{i2}, \]
\[P_{i2} = hf_i(x_j + nh, Z_{i2}, \cdots, Z_{N2}) + BP_{i1}; \]
\[R_{i3} = (p - s - t - n + r)Q_{i2} + tP_{i2} + e(R_{i3}), \]
\[Z_{i3} = Z_{i2} + R_{i3}, \]
\[Q_{i3} = \left(\frac{a - n + r}{a - p + s + t} \right) Q_{i2} + \left(\frac{t}{a - p + s + t} \right) P_{i2} - \frac{1}{a - p + s + t} R_{i3}, \]
\[P_{i3} = hf_i(x_j + ph, Z_{i3}, \cdots, Z_{N3}) + \frac{c - t}{d} P_{i2}; \]
\[R_{i4} = (a - p + s + t)Q_{i3} + dP_{i3} + e(R_{i4}), \]
\[y_{ij+1} = Z_{i4} = Z_{i3} + R_{i4}, \]
\[Q_{i4} = R_{i4} - (a - p + s + t)Q_{i3} - dP_{i3}. \]

Mathematics Department
Woolwich Polytechnic
London, England