ERRATA

391.-E. P. Adams \& R. L. Hippisley, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, second and third reprints, The Smithsonian Institution, Washington, D. C., 1947 and 1957.

On p. 25, in Formula 1.86 the second term of the right member should read $A_{1}\{f(b)+f(a)\}$, with $A_{1}=+\frac{1}{2}$ rather than $-\frac{1}{2}$ as in the fourth line from the bottom of the page.

On p. 26, in Formula 1.861 the second term of the right member should read $+\frac{1}{2}\{f(b)+f(a)\}$ instead of $-\frac{1}{2}\{f(b)-f(a)\}$.

Henry E. Fettis

Aeronautical Research Laboratories
Wright-Patterson Air Force Base, Ohio
Editorial note: For previous notices of errors in this book, see Math. Comp., v. 16, 1962, p. 126, MTE 307, and MTAC, v. 12, 1958, p. 262, MTE 265, where further references are given.
392.-I. M. Ryshik \& I. S. Gradstein, Summen-, Produkt- und Integral-Tafeln: Tables of Series, Products, and Integrals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957.

On p. 146, in formula 3.214 1, the integral diverges. This error appears also in the 1963 edition.

The value of this integral has also appeared erroneously in a number of earlier collections published within the past one hundred years, as, for example, those of Bierens de Haan [1], Silberstein [2], and Dwight [3].

In his elaborate examination of Bierens de Haan's tables, Lindman [4], on the other hand, noted the divergence of this integral.

Glenn M. Schmieg

Institute of Field Physics
University of North Carolina
Chapel Hill, North Carolina

1. D. Bierens de Haan, Nouvelles Tables d'Intégrales Définies, Leyden, 1867 (reprinted by Stechert, New York, 1939), Table 26, formula 7. (See MTAC, v. 1, 1943-1945, pp. 321-322, RMT 167.)
2. L. Silberstein, Synopsis of Applicable Mathematics, with Tables, Bell, London, 1923. (First published in 1922 as Bell's Mathematical Tables.)
3. H. B. Dwight, Tables of Integrals and other Mathematical Data, Macmillan, New York, 1934. (See MTAC, v. 1, 1943-1945, pp. 190-191, RMT 154; ibid., pp. 195-196, MTE 32.) The integral under discussion has been omitted in the later editions.
4. C. F. Lindman, Examen des Nouvelles Tables d'Intégrales Définies de M. Bierens de Haan, K. Svenska Vetenskaps Akad., Handlingar, v. 24, no. 5, Stockholm, 1891. (Reprinted by Stechert, 1944, and reviewed in MTAC, v. 1, 1943-1945, pp. 321-322, RMT 167.)

Editorial note: For additional errata in Ryshik \& Gradstein, see Math. Comp., v. 14, 1960, pp. 401-403, MTE 293; v. 17, 1963, p. 102, MTE 326. It seems appropriate to note here the convergent integral

$$
\int_{0}^{\infty}\left(1-e^{\left(-1 / x^{2}\right)}\right) d x=\sqrt{\pi}
$$

which may not have been published before.
393.-Milton Abramowitz \& Irene A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964.

In the table under 6.1.34, on p.256, the value of c_{k} for $k=23$ has been incorrectly transcribed from the cited table of H. T. Davis: for 206 , read 207.

On p. 329, line 10 , replace $\sqrt{2 n-\frac{1}{4}}$ by $\sqrt{n-\frac{1}{8}}$. Also, while the reference to Table 7.10 on lines $12-13$ is correct, the asymptotic formula on lines $10-11$ appears only in T. Laible, "Höhenkarte des Fehler integrals," Z. Angew. Math. Phys., v. 2, 1951, pp. 484-486.

Herbert E. Salzer
156 Beach 125th Street
Belle Harbor, Long Island, New York
On p. 302, in formula 7.4.10, the upper limit of the integral on the right-hand side should read $x \sqrt{a}$ instead of $a x$.

Robert S. Johnson

Radio Corporation of America

Moorestown, New Jersey
Third printing March 1965:
All the entries in Table 9.7, on p. 415, have been recalculated to sufficient accuracy to yield respective cross products that differ by less than 10^{-14}. The zeros were subsequently rounded to 10 D . In this computation a Bessel function subroutine was used that yields values correct to 16 D .

Comparison of these more extended approximations with those constituting Table 9.7 revealed that the following corrections are necessary in the latter.

s sth zero of $J_{0}(x) Y_{0}(\lambda x)-Y_{0}(x) J_{0}(\lambda x)$			
λ^{-1}	s	for	read
0.8	1	12.55847028	12.55847031
0.6	1	4.69706410	4.69706409
0.4	1	2.07322886	2.07322885
0.2	2	1.55710	1.55711
0.2	3	1.34641	2.34642
0.08	4		1.08536

sth zero of $J_{1}(x) Y_{1}(\lambda x)-Y_{1}(x) J_{1}(\lambda x)$

λ^{-1}	s	for	read
0.8	1	12.59004148	12.59004151
0.8	5	62.83662	62.83663
0.6	1	4.75805426	4.75805425
0.4	1	2.15647	249
0.2	2	1.61108	2.15647
0.1	3	1.07483	1.61107
0.08	4	1.38437	1.07484
0.08	5		1.11441
			1.38440

$$
\text { sth zero of } J_{1}(x) Y_{0}(\lambda x)-Y_{1}(x) J_{0}(\lambda x)
$$

λ^{-1}	s	for	read
0.8	1	6.56973323	6.56973310
0.6	1	2.60328237	2.60328138
0.1	5	1.59489	1.59490
0.08	5	1.25198	1.25203

Henry E. Fettis
James C. Caslin
Applied Mathematics Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio
Fifth printing December 1965:
On p. 562, at the end of Eq. 15.4.25, for

$$
P_{a+b-1}^{b-a}\left[-x(1+x)^{-1 / 2}\right]
$$

read

$$
P_{a+b-1}^{b-a}\left[-x^{1 / 2}(1+x)^{-1 / 2}\right] .
$$

Paul Concus

Lawrence Radiation Laboratory

University of California
Berkeley, California
Editorial note: Other errata in this Handbook have been previously announced in Math. Comp., v. 19, p. 174, MTE 362; pp. 360-361, MTE 365; p. 527, MTE 373; p. 705, MTE 376; v. 20, p. 202, MTE 379; p. 344, MTE 388.
394.-J. W. Sheldon, B. Zondek \& M. Friedman, "On the time-step to be used for the computation of orbits by numerical integration," MTAC, v. 11, 1957, pp. 181-189.

On p. 181, in formula (1) the coefficient of the tenth backward difference, $\nabla^{10} X_{n}{ }^{i}$, should read

$$
\frac{13,695,779,093}{237,758,976,000}
$$

instead of

$$
\frac{301,307,139,941}{5,230,697,472,000} .
$$

Joseph L. Brady

Lawrence Radiation Laboratory
Livermore, California
Editorial note: These coefficients can be identified with the numbers $(-1)^{n-1}(n-1)$ $\cdot B_{n}{ }^{(n)}(1) / n$!, where $B_{n}{ }^{(n)}(1)$ denotes the value of the nth Bernoulli polynomial of the nth order when $x=1$. For a table of the exact values of $B_{n}^{(n)}(1) / n!, n=1(1) 20$, see A. N. Lowan \& H.

Salzer, "Table of coefficients in numerical integration formulae," J. Math. Phys., v. 22, 1943, pp. 49-50.
395.-J. W. Glover, Tables of Applied Mathematics in Finance, Insurance, and Statistics, Wahr Publishing Co., Ann Arbor, Mich., 1951.

On p. 492 of this reprint of the 1930 edition of these tables, the following termi-nal-digit corrections are required in the 10D table of mathematical constants.

Entry	for	read
$(2 \pi)^{-1 / 2}$	3	4
$r(=\rho \sqrt{ } \overline{2})$	0	2
$\log r$	3	4

Also, immediately below \sqrt{e}, for $1 / \sqrt{ }$, read $1 / \sqrt{e}$.
Charles R. Sexton
Editorial note: For additional corrections see MTAC, v. 5, 1951, p. 228, MTE 194 and the FMRC Index, v. 2, p. 822.
396.-G. W. Spenceley, R. M. Spenceley \& E. R. Epperson, Smithsonian Logarithmic Tables to Base e and Base 10, The Smithsonian Institution, Washington, D.C., 1952.

The following corrections supplement those previously reported (MTAC, v. 10, 1956, p. 261, MTE 251; ibid., v. 11, 1957, p. 226, MTE 256; Math. Comp., v. 14, 1960, p. 308, MTE 283; ibid., v. 15, 1961, p. 113, MTE 297; ibid., v. 17, 1963, p. 103, MTE 327; ibid., v. 19, 1965, p. 362, MTE 370).

Page	Entry	For	Read
14	$\ln 670$	$\ldots 74368807$	$\ldots .74368806$
34	$\ln 1682$	$\ldots 36378377$	$\ldots 36378378$
39	$\ln 1925$	$\ldots 59836882$	$\ldots .59836881$
40	$\ln 1975$	$\ldots 24337447$	$\ldots 24337446$
47	$\ln 2312$	$\ldots 82268 \ldots$	$\ldots 92268 \ldots$
91	$\ln 4534$	$\ldots 67444 \ldots$	$\ldots 67474 \ldots$
100	$\ln 4993$	$\ldots 00009 \ldots$	$\ldots 00609 \ldots$
109	$\ln 5442$	$\ldots 43190 \ldots$	$\ldots 43191 \ldots$
129	$\ln 6441$	$\ldots 76890 \ldots$	$\ldots 46890 \ldots$
135	$\ln 6748$	$\ldots 65859 \ldots$	$\ldots 65858 \ldots$
172	$\ln 8570$	$\ldots 91425 \ldots$	$\ldots 91825 \ldots$
178	$\ln 8862$	$\ldots 59436 \ldots$	$\ldots 59434 \ldots$
190	$\ln 9480$	$\ldots 49068 \ldots$	$\ldots 49067 \ldots$
322	$\log 5992$	$\ldots 01410 \ldots$	$\ldots 91410 \ldots$

On p. 124, in the value given for $\ln 6196$ the digit 6 in the sequence 36759 is so imperfectly formed as to be almost certainly misread as a zero.

Charles R. Sexton

[^0]
[^0]: P.O. Box 873

 Berkeley, California

