Questions concerning Khintchine's constant and the efficient computation of regular continued fractions

Authors:
John W. Wrench, Jr. and Daniel Shanks

Journal:
Math. Comp. **20** (1966), 444-448

DOI:
https://doi.org/10.1090/S0025-5718-66-99920-0

Corrigendum:
Math. Comp. **21** (1967), 130.

Full-text PDF

References | Additional Information

**[1]**Daniel Shanks, (Reviewer),**RMT**11, 12, (Review of two translations of Khintchine's*Continued Fractions), Math. Comp.*, v. 20, 1966, pp. 171-173.**[2]**Daniel Shanks & J. W. Wrench, Jr., "Khintchine's constant,"*Amer. Math. Monthly*, v. 66, 1959, pp. 276-279. MR**21**#1950. MR**0103167 (21:1950)****[3]**J. W. Wrench, Jr., "Further evaluation of Khintchine's constant,"*Math. Comp.*, v. 14, 1960, pp. 370-371.**[4]**D. H. Lehmer, "Euclid's Algorithm for large numbers,"*Amer. Math. Monthly*, v. 45, 1938, pp. 227-233. MR**1524250****[5]**D. E. Kntjth, "Euler's constant to 1271 places,"*Math. Comp.*, v. 16, 1962, pp. 275-281. MR 26 #5763.**[6]**Daniel Shanks, "A study of postulates: The 'thermodynamic' derivation of the adiabatic gas law,"*Amer. J. Phys.*, v. 24, 1956, pp. 352-354.**[7]**Daniel Shanks, "Is the quadratic reciprocity law a deep theorem?"*Solved and Unsolved Problems in Number Theory*, Vol. 1, Spartan, Washington, 1962, p. 65, see (a). MR**28**#3952. MR**0160741 (28:3952)**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-66-99920-0

Article copyright:
© Copyright 1966
American Mathematical Society